Repositori institucional URV
Español Català English
TITLE:
Absolute Distance Prediction Based on Deep Learning Object Detection and Monocular Depth Estimation Models - imarina:9380780

URV's Author/s:Abdellatif Fatahallah Ibrahim Mahmoud, Hatem / Abdulwahab, Saddam Abdulrhman Hamed / Cristiano Rodríguez, Julián Efrén / Masoumian, Armin / Puig Valls, Domènec Savi
Author, as appears in the article.:Masoumian, Armin; Marei, David G F; Abdulwahab, Saddam; Cristiano, Julian; Puig, Domenec; Rashwan, Hatem A
Author's mail:domenec.puig@urv.cat
saddam.abdulwahab@urv.cat
armin.masoumian@estudiants.urv.cat
armin.masoumian@estudiants.urv.cat
hatem.abdellatif@urv.cat
julianefren.cristianor@urv.cat
saddam.abdulwahab@urv.cat
Author identifier:0000-0002-0562-4205
0000-0001-5421-1637
Journal publication year:2021
Publication Type:Proceedings Paper
APA:Masoumian, Armin; Marei, David G F; Abdulwahab, Saddam; Cristiano, Julian; Puig, Domenec; Rashwan, Hatem A (2021). Absolute Distance Prediction Based on Deep Learning Object Detection and Monocular Depth Estimation Models. Amsterdam: IOS Press
Papper original source:Frontiers In Artificial Intelligence And Applications. 339 325-334
Abstract:Determining the distance between the objects in a scene and the camera sensor from 2D images is feasible by estimating depth images using stereo cameras or 3D cameras. The outcome of depth estimation is relative distances that can be used to calculate absolute distances to be applicable in reality. However, distance estimation is very challenging using 2D monocular cameras. This paper presents a deep learning framework that consists of two deep networks for depth estimation and object detection using a single image. Firstly, objects in the scene are detected and localized using the You Only Look Once (YOLOv5) network. In parallel, the estimated depth image is computed using a deep autoencoder network to detect the relative distances. The proposed object detection based YOLO was trained using a supervised learning technique, in turn, the network of depth estimation was self-supervised training. The presented distance estimation framework was evaluated on real images of outdoor scenes. The achieved results show that the proposed framework is promising and it yields an accuracy of 96% with RMSE of 0.203 of the correct absolute distance.
Article's DOI:10.3233/FAIA210151
Link to the original source:https://ebooks.iospress.nl/doi/10.3233/FAIA210151
Papper version:info:eu-repo/semantics/publishedVersion
licence for use:https://creativecommons.org/licenses/by/3.0/es/
Department:Enginyeria Informàtica i Matemàtiques
Licence document URL:https://repositori.urv.cat/ca/proteccio-de-dades/
Thematic Areas:Artificial intelligence
Ciências agrárias i
Comunicació i informació
Engenharias iii
Engenharias iv
General o multidisciplinar
Información y documentación
Interdisciplinar
Medicina ii
Keywords:Deep learning
Depth estimation
Distance predictio
Distance prediction
Object detection
Entity:Universitat Rovira i Virgili
Record's date:2024-09-21
Search your record at:

Available files
FileDescriptionFormat
DocumentPrincipalDocumentPrincipalapplication/pdf

Information

© 2011 Universitat Rovira i Virgili