Repositori institucional URV
Español Català English
TITLE:
Referenceless Image Quality Assessment Utilizing Deep Transfer-Learned Features - imarina:9385563

URV's Author/s:Abdelnasser Mohamed Mahmoud, Mohamed / Puig Valls, Domènec Savi
Author, as appears in the article.:Ahmed, Basma; Omer, Osama A; Rashed, Amal; Puig, Domenec; Abdel-Nasser, Mohamed
Author's mail:domenec.puig@urv.cat
mohamed.abdelnasser@urv.cat
Author identifier:0000-0002-0562-4205
0000-0002-1074-2441
Journal publication year:2022
Publication Type:Proceedings Paper
APA:Ahmed, Basma; Omer, Osama A; Rashed, Amal; Puig, Domenec; Abdel-Nasser, Mohamed (2022). Referenceless Image Quality Assessment Utilizing Deep Transfer-Learned Features. Amsterdam: IOS Press
Papper original source:Frontiers In Artificial Intelligence And Applications. 356 243-248
Abstract:Image quality assessment (IQA) algorithms are critical for determining the quality of high-resolution photographs. This work proposes a hybrid NR IQA approach that uses deep transfer learning to enhance classic NR IQA with deep learning characteristics. Firstly, we simulate a pseudo reference image (PRI) from the input image. Then, we used a pre-trained inception-v3 deep feature extractor to generate the feature maps from the input distorted image and PRI. The distance between the feature maps of the input distorted image and PRI are measured using the local structural similarity (LSS) method. A nonlinear mapping function is used to calculate the final quality scores. When compared to previous work, the proposed method has a promising performance.
Article's DOI:10.3233/FAIA220345
Link to the original source:https://ebooks.iospress.nl/doi/10.3233/FAIA220345
Papper version:info:eu-repo/semantics/publishedVersion
licence for use:https://creativecommons.org/licenses/by/3.0/es/
Department:Enginyeria Informàtica i Matemàtiques
Licence document URL:https://repositori.urv.cat/ca/proteccio-de-dades/
Thematic Areas:Artificial intelligence
Ciências agrárias i
Comunicació i informació
Engenharias iii
Engenharias iv
General o multidisciplinar
Información y documentación
Interdisciplinar
Medicina ii
Keywords:Blind image quality
Deep learnin
Deep learning
Pseudo-reference
Similarity measures
Entity:Universitat Rovira i Virgili
Record's date:2024-10-12
Search your record at:

Available files
FileDescriptionFormat
DocumentPrincipalDocumentPrincipalapplication/pdf

Information

© 2011 Universitat Rovira i Virgili