In this paper we study a one parameter family of rational maps obtained by applying the Chebyshev-Halley root finding algorithms. We show that the dynamics near parameters where the family presents some degeneracy might be understood from the point of view of singular perturbations. More precisely, we relate the dynamics of those maps with the one of the McMullen family Mλ(z)=z4+λ/z2, using quasi-conformal surgery.
Herramientas para el análisis de diagramas de bifurcación en sistemas dinámicos
Acción del progama de financiación:
Proyectos I+D Generación de Conocimiento
Acrónimo:
ATBiD
Código de proyecto:
PID2020-118281GB-C33
Descripción:
In this paper we study a one parameter family of rational maps obtained by applying the Chebyshev-Halley root finding algorithms. We show that the dynamics near parameters where the family presents some degeneracy might be understood from the point of view of singular perturbations. More precisely, we relate the dynamics of those maps with the one of the McMullen family Mλ(z)=z4+λ/z2, using quasi-conformal surgery.