Repositori institucional URV
Español Català English
TÍTULO:
Predicting the Risk of Psychological Distress among Lung Cancer Patients: Development and Validation of a Predictive Algorithm Based on Sociodemographic and Clinical Factors - imarina:9218780

Autor/es de la URV:Jiménez Herrera, María Francisca / Jin, Yan Fei / Tian, Xu
Autor según el artículo:Tian X; Jin Y; Tang L; Pi YP; Chen WQ; Jimenez-Herrera M
Direcció de correo del autor:xu.tian@estudiants.urv.cat
maria.jimenez@urv.cat
Identificador del autor:0000-0003-2599-3742
Año de publicación de la revista:2021
Tipo de publicación:Journal Publications
Referencia de l'ítem segons les normes APA:Tian X; Jin Y; Tang L; Pi YP; Chen WQ; Jimenez-Herrera M (2021). Predicting the Risk of Psychological Distress among Lung Cancer Patients: Development and Validation of a Predictive Algorithm Based on Sociodemographic and Clinical Factors. Asia-Pacific Journal Of Oncology Nursing, 8(4), 403-412. DOI: 10.4103/apjon.apjon-2114
Referencia al articulo segun fuente origial:Asia-Pacific Journal Of Oncology Nursing. 8 (4): 403-412
Resumen:Objective: Lung cancer patients reported the highest incidence of psychological distress. It is extremely important to identify which patients at high risk for psychological distress. The study aims to develop and validate a predictive algorithm to identify lung cancer patients at high risk for psychological distress. Methods: This cross-sectional study identified the risk factors of psychological distress in lung cancer patients. Data on sociodemographic and clinical variables were collected from September 2018 to August 2019. Structural equation model (SEM) was conducted to determine the associations between all factors and psychological distress, and then construct a predictive algorithm. Coincidence rate was also calculated to validate this predictive algorithm. Results: Total 441 participants sent back validated questionnaires. After performing SEM analysis, educational level (β = 0.151, P = 0.004), residence (β = 0.146, P = 0.016), metastasis (β = 0.136, P = 0.023), pain degree (β = 0.133, P = 0.005), family history (β = -0.107, P = 0.021), and tumor, node, and metastasis stage (β = -0.236, P < 0.001) were independent predictors for psychological distress. The model built with these predictors showed an area under the curve of 0.693. A cutoff of 66 predicted clinically significant psychological distress with a sensitivity, specificity, positive predictive value, and negative predictive value of 65.41%, 66.90%, 28.33%, and 89.67%, respectively. The coincidence rate between predictive algorithm and distress thermometer was 64.63%. Conclusions: A validated, easy-to-use predictive algorithm was developed in this study, which can be used to identify patients at high risk of psychological distress with moderate accuracy.
DOI del artículo:10.4103/apjon.apjon-2114
Enlace a la fuente original:https://apjon.org/article/S2347-5625(21)00064-0/fulltext
Versión del articulo depositado:info:eu-repo/semantics/publishedVersion
Acceso a la licencia de uso:https://creativecommons.org/licenses/by/3.0/es/
Departamento:Infermeria
URL Documento de licencia:https://repositori.urv.cat/ca/proteccio-de-dades/
Áreas temáticas:Oncology (nursing)
Oncology
Nursing
Palabras clave:Structural equation model
Quality-of-life
Psychological distress
Prediction model
Lung neoplasm
women
thermometer
structural equation model
stress
service use
psychological distress
prevalence
prediction model
model
depression
care
anxiety
Entidad:Universitat Rovira i Virgili
Fecha de alta del registro:2024-07-27
Busca tu registro en:

Archivos desponibles
ArchivoDescripciónFormato
DocumentPrincipalDocumentPrincipalapplication/pdf

Información

© 2011 Universitat Rovira i Virgili