Repositori institucional URV
Español Català English
TÍTULO:
Monocular Depth Estimation Using Deep Learning: A Review - imarina:9280435

Autor/es de la URV:Abdellatif Fatahallah Ibrahim Mahmoud, Hatem / CRISTIANO RODRÍGUEZ, JULIÁN EFRÉN / Masoumian, Armin / Puig Valls, Domènec Savi
Autor según el artículo:Masoumian, Armin; Rashwan, Hatem A; Cristiano, Julian; Asif, M Salman; Puig, Domenec
Direcció de correo del autor:hatem.abdellatif@urv.cat
armin.masoumian@estudiants.urv.cat
armin.masoumian@estudiants.urv.cat
domenec.puig@urv.cat
Identificador del autor:0000-0001-5421-1637
0000-0002-0562-4205
Año de publicación de la revista:2022
Tipo de publicación:Journal Publications
Referencia de l'ítem segons les normes APA:Masoumian, Armin; Rashwan, Hatem A; Cristiano, Julian; Asif, M Salman; Puig, Domenec (2022). Monocular Depth Estimation Using Deep Learning: A Review. Sensors, 22(14), 5353-. DOI: 10.3390/s22145353
Referencia al articulo segun fuente origial:Sensors. 22 (14): 5353-
Resumen:In current decades, significant advancements in robotics engineering and autonomous vehicles have improved the requirement for precise depth measurements. Depth estimation (DE) is a traditional task in computer vision that can be appropriately predicted by applying numerous procedures. This task is vital in disparate applications such as augmented reality and target tracking. Conventional monocular DE (MDE) procedures are based on depth cues for depth prediction. Various deep learning techniques have demonstrated their potential applications in managing and supporting the traditional ill-posed problem. The principal purpose of this paper is to represent a state-of-the-art review of the current developments in MDE based on deep learning techniques. For this goal, this paper tries to highlight the critical points of the state-of-the-art works on MDE from disparate aspects. These aspects include input data shapes and training manners such as supervised, semi-supervised, and unsupervised learning approaches in combination with applying different datasets and evaluation indicators. At last, limitations regarding the accuracy of the DL-based MDE models, computational time requirements, real-time inference, transferability, input images shape and domain adaptation, and generalization are discussed to open new directions for future research.
DOI del artículo:10.3390/s22145353
Enlace a la fuente original:https://www.mdpi.com/1424-8220/22/14/5353
Versión del articulo depositado:info:eu-repo/semantics/publishedVersion
Acceso a la licencia de uso:https://creativecommons.org/licenses/by/3.0/es/
Departamento:Enginyeria Informàtica i Matemàtiques
URL Documento de licencia:https://repositori.urv.cat/ca/proteccio-de-dades/
Áreas temáticas:Zootecnia / recursos pesqueiros
Química
Medicine (miscellaneous)
Medicina veterinaria
Medicina iii
Medicina ii
Medicina i
Materiais
Matemática / probabilidade e estatística
Linguística e literatura
Letras / linguística
Interdisciplinar
Instruments & instrumentation
Instrumentation
Information systems
Geografía
Geociências
Farmacia
Engineering, electrical & electronic
Engenharias iv
Engenharias iii
Engenharias ii
Engenharias i
Electrochemistry
Electrical and electronic engineering
Educação física
Ciências biológicas iii
Ciências biológicas ii
Ciências biológicas i
Ciências ambientais
Ciências agrárias i
Ciência de alimentos
Ciência da computação
Chemistry, analytical
Biotecnología
Biodiversidade
Biochemistry
Atomic and molecular physics, and optics
Astronomia / física
Arquitetura, urbanismo e design
Analytical chemistry
Palabras clave:Supervised, semi-supervised, and unsupervised learning
Supervised
Single image depth estimation
Semi-supervised
Multi-task learning
Monocular depth estimation
Forecasting
Deep learning
Camera
Augmented reality
And unsupervised learning
Entidad:Universitat Rovira i Virgili
Fecha de alta del registro:2024-09-21
Busca tu registro en:

Archivos desponibles
ArchivoDescripciónFormato
DocumentPrincipalDocumentPrincipalapplication/pdf

Información

© 2011 Universitat Rovira i Virgili