Repositori institucional URV
Español Català English
TÍTOL:
Load Balancing Multi-Player MAB Approaches for RIS-Aided mmWave User Association - imarina:9293317

Autor/s de la URV:Abdelnasser Mohamed Mahmoud, Mohamed
Autor segons l'article:Mohamed, Ehab Mahmoud; Hashima, Sherief; Hatano, Kohei; Takimoto, Eiji; Abdel-Nasser, Mohamed
Adreça de correu electrònic de l'autor:mohamed.abdelnasser@urv.cat
Identificador de l'autor:0000-0002-1074-2441
Any de publicació de la revista:2023
Tipus de publicació:Journal Publications
Referència de l'ítem segons les normes APA:Mohamed, Ehab Mahmoud; Hashima, Sherief; Hatano, Kohei; Takimoto, Eiji; Abdel-Nasser, Mohamed (2023). Load Balancing Multi-Player MAB Approaches for RIS-Aided mmWave User Association. Ieee Access, 11(), 15816-15830. DOI: 10.1109/access.2023.3244781
Referència a l'article segons font original:Ieee Access. 11 15816-15830
Resum:In this paper, multiple reconfigurable intelligent surface (RIS) boards are deployed to enhance millimeter wave (mmWave) communication in a harsh blockage environment, where mmWave line-of-sight (LoS) link is completely blocked. Herein, RIS-user association should be considered to maximize the users' achievable data rate while assuring load balance among the installed RIS panels. However, maximum received power (MRP) based RIS-user association will overload some of the RIS boards while keeping others unloaded, which causes RIS load to unbalance and decreases the users' achievable data rate. Instead, in this paper, an online learning methodology using centralized multi-player multi-armed bandit (MP-MAB) with arms' load balancing is proposed. In this formulation, mmWave users, RIS boards, and achievable users' rates act as the bandit game players, arms, and rewards. During the MAB game, the users learn how to avoid associating with the heavily loaded RIS boards, maximizing their achievable data rates, and balancing the RIS loads. Three centralized MP-MAB algorithms with arms' load balancing are proposed from the family of upper confidence bound (UCB) MAB algorithms. These algorithms are UCB1, Kullback-Leibler divergence UCB (KLUCB), and Minimax optimal stochastic strategy (MOSS) with arms' load balancing, i.e., UCB1-LB, KLUCB-LB, and MOSS-LB. Numerical analysis ensures the superior performance of the proposed algorithms over MRP-based RIS-user association and other benchmarks.
DOI de l'article:10.1109/access.2023.3244781
Enllaç font original:https://ieeexplore.ieee.org/document/10044086
Versió de l'article dipositat:info:eu-repo/semantics/publishedVersion
Accès a la llicència d'ús:https://creativecommons.org/licenses/by/3.0/es/
Departament:Enginyeria Electrònica, Elèctrica i Automàtica
URL Document de llicència:https://repositori.urv.cat/ca/proteccio-de-dades/
Àrees temàtiques:Telecommunications
Materials science (miscellaneous)
Materials science (all)
General materials science
General engineering
General computer science
Engineering, electrical & electronic
Engineering (miscellaneous)
Engineering (all)
Engenharias iv
Engenharias iii
Electrical and electronic engineering
Computer science, information systems
Computer science (miscellaneous)
Computer science (all)
Ciência da computação
Paraules clau:User association
Reconfigurable intelligent surface
Multi-armed bandit
Millimeter wave communication
Millimeter wave
Intelligent surfaces
wireless communication
user association
tuning
transmission
robust
reconfigurable intelligent surface
performance analysis
optimization
multi-armed bandit problem
multi-armed bandit
millimeter wave
load management
games
design
channel estimation
array signal processing
Entitat:Universitat Rovira i Virgili
Data d'alta del registre:2024-10-12
Cerca el teu registre a:

Fitxers disponibles
FitxerDescripcióFormat
DocumentPrincipalDocumentPrincipalapplication/pdf

Informació

© 2011 Universitat Rovira i Virgili