Repositori institucional URV
Español Català English
TITLE:
From w-Domination in Graphs to Domination Parameters in Lexicographic Product Graphs - imarina:9296663

URV's Author/s:CABRERA MARTÍNEZ, ABEL / Montejano Cantoral, Luis Pedro / Rodríguez Velázquez, Juan Alberto
Author, as appears in the article.:Cabrera-Martinez, Abel; Montejano, Luis Pedro; Rodriguez-Velazquez, Juan Alberto
Author's mail:luispedro.montejano@urv.cat
juanalberto.rodriguez@urv.cat
Author identifier:0000-0002-9082-7647
Journal publication year:2023
Publication Type:Journal Publications
APA:Cabrera-Martinez, Abel; Montejano, Luis Pedro; Rodriguez-Velazquez, Juan Alberto (2023). From w-Domination in Graphs to Domination Parameters in Lexicographic Product Graphs. Bulletin Of The Malaysian Mathematical Sciences Society, 46(3), 109-. DOI: 10.1007/s40840-023-01502-5
Papper original source:Bulletin Of The Malaysian Mathematical Sciences Society. 46 (3): 109-
Abstract:A wide range of parameters of domination in graphs can be defined and studied through a common approach that was recently introduced in [https://doi.org/10.26493/1855-3974.2318.fb9] under the name of w-domination, where w= (w, w1, ⋯ , wl) is a vector of non-negative integers such that w≥ 1. Given a graph G, a function f: V(G) ⟶ { 0 , 1 , ⋯ , l} is said to be a w-dominating function if ∑ u∈N(v)f(u) ≥ wi for every vertex v with f(v) = i, where N(v) denotes the open neighbourhood of v∈ V(G). The weight of f is defined to be ω(f) = ∑ v∈V(G)f(v) , while the w-domination number of G, denoted by γw(G) , is defined as the minimum weight among all w-dominating functions on G. A wide range of well-known domination parameters can be defined and studied through this approach. For instance, among others, the vector w= (1 , 0) corresponds to the case of standard domination, w= (2 , 1) corresponds to double domination, w= (2 , 0 , 0) corresponds to Italian domination, w= (2 , 0 , 1) corresponds to quasi-total Italian domination, w= (2 , 1 , 1) corresponds to total Italian domination, w= (2 , 2 , 2) corresponds to total { 2 } -domination, while w= (k, k- 1 , ⋯ , 1 , 0) corresponds to { k} -domination. In this paper, we show that several domination parameters of lexicographic product graphs G∘ H are equal to γw(G) for some vector w∈ { 2 } × { 0 , 1 , 2 } l and l∈ { 2 , 3 }. The decision on whether the equality holds for a specific vector w will depend on the value of some domination parameters of H. In particular, we focus on quasi-total Italian domination, total Italian domination, 2-domination, double domination, total { 2 } -domination, and double total domination of lexicographic product graphs.
Article's DOI:10.1007/s40840-023-01502-5
Link to the original source:https://link.springer.com/article/10.1007/s40840-023-01502-5
Papper version:info:eu-repo/semantics/publishedVersion
licence for use:https://creativecommons.org/licenses/by/3.0/es/
Department:Enginyeria Informàtica i Matemàtiques
Licence document URL:https://repositori.urv.cat/ca/proteccio-de-dades/
Thematic Areas:Mathematics (miscellaneous)
Mathematics (all)
Mathematics
General mathematics
Keywords:W-domination
Quasi-total italian domination
Lexicographic product graph
Double domination
2-domination
(total) italian domination
Entity:Universitat Rovira i Virgili
Record's date:2024-10-26
Search your record at:

Available files
FileDescriptionFormat
DocumentPrincipalDocumentPrincipalapplication/pdf

Information

© 2011 Universitat Rovira i Virgili