Repositori institucional URV
Español Català English
TÍTOL:
Automated MUltiscale simulation environment - imarina:9366519

Autor/s de la URV:Lopez Alonso, Nuria / Morandi, Santiago / Sabadell Rendón, Albert
Autor segons l'article:Sabadell-Rendón, A; Kazmierczak, K; Morandi, S; Euzenat, F; Curulla-Ferré, D; López, N
Adreça de correu electrònic de l'autor:nuria.lopez@urv.cat
santiago.morandi@estudiants.urv.cat
albert.sabadell@estudiants.urv.cat
Any de publicació de la revista:2023
Tipus de publicació:Journal Publications
Referència de l'ítem segons les normes APA:Sabadell-Rendón, A; Kazmierczak, K; Morandi, S; Euzenat, F; Curulla-Ferré, D; López, N (2023). Automated MUltiscale simulation environment. Digital Discovery, 2(6), 1721-1732. DOI: 10.1039/d3dd00163f
Referència a l'article segons font original:Digital Discovery. 2 (6): 1721-1732
Resum:Multiscale techniques integrating detailed atomistic information on materials and reactions to predict the performance of heterogeneous catalytic full-scale reactors have been suggested but lack seamless implementation. The largest challenges in the multiscale modeling of reactors can be grouped into two main categories: catalytic complexity and the difference between time and length scales of chemical and transport phenomena. Here we introduce the Automated MUltiscale Simulation Environment AMUSE, a workflow that starts from Density Functional Theory (DFT) data, automates the analysis of the reaction networks through graph theory, prepares it for microkinetic modeling, and subsequently integrates the results into a standard open-source Computational Fluid Dynamics (CFD) code. We demonstrate the capabilities of AMUSE by applying it to the unimolecular iso-propanol dehydrogenation reaction and then, increasing the complexity, to the pre-commercial Pd/In2O3 catalyst employed for the CO2 hydrogenation to methanol. The results show that AMUSE allows the computational investigation of heterogeneous catalytic reactions in a comprehensive way, providing essential information for catalyst design from the atomistic to the reactor scale level. AMUSE is a multiscale framework integrating detailed atomistic information on materials and reactions to predict the performance of heterogeneous catalytic full-scale reactors.
DOI de l'article:10.1039/d3dd00163f
Enllaç font original:https://pubs.rsc.org/en/content/articlelanding/2023/dd/d3dd00163f
Versió de l'article dipositat:info:eu-repo/semantics/publishedVersion
Accès a la llicència d'ús:https://creativecommons.org/licenses/by/3.0/es/
Departament:Química Física i Inorgànica
URL Document de llicència:https://repositori.urv.cat/ca/proteccio-de-dades/
Àrees temàtiques:Computer science, interdisciplinary applications
Chemistry, multidisciplinary
Chemistry (miscellaneous)
Paraules clau:Mechanism
Mass-transfer
Kinetics
Fixed-bed reactors
Chemistry
Cfd
Entitat:Universitat Rovira i Virgili
Data d'alta del registre:2024-08-03
Cerca el teu registre a:

Fitxers disponibles
FitxerDescripcióFormat
DocumentPrincipalDocumentPrincipalapplication/pdf

Informació

© 2011 Universitat Rovira i Virgili