Repositori institucional URV
Español Català English
TÍTOL:
Deep learning-based survival prediction of brain tumor patients using attention-guided 3D convolutional neural network with radiomics approach from multimodality magnetic resonance imaging - imarina:9366619

Autor/s de la URV:Abdelnasser Mohamed Mahmoud, Mohamed / Mazher, Moona / Puig Valls, Domènec Savi
Autor segons l'article:Mazher, Moona; Qayyum, Abdul; Puig, Domenec; Abdel-Nasser, Mohamed
Adreça de correu electrònic de l'autor:mohamed.abdelnasser@urv.cat
moona.mazher@estudiants.urv.cat
domenec.puig@urv.cat
Identificador de l'autor:0000-0002-1074-2441
0000-0003-4444-5776
0000-0002-0562-4205
Any de publicació de la revista:2024
Tipus de publicació:Journal Publications
Referència de l'ítem segons les normes APA:Mazher, Moona; Qayyum, Abdul; Puig, Domenec; Abdel-Nasser, Mohamed (2024). Deep learning-based survival prediction of brain tumor patients using attention-guided 3D convolutional neural network with radiomics approach from multimodality magnetic resonance imaging. International Journal Of Imaging Systems And Technology, 34(1), -. DOI: 10.1002/ima.23010
Referència a l'article segons font original:International Journal Of Imaging Systems And Technology. 34 (1):
Resum:Automatic survival prediction of gliomas from brain magnetic resonance imaging (MRI) volumes is an essential step for a patient's prognosis analysis. Radiomics research delivers beneficial feature information from MRI imaging which is substantially required by clinicians and oncologists for predicting disease prognosis for precise surgical treatment and planning. In recent years, the success of deep learning has been vast in the field of medical imaging, and it shows state-of-the-art performance in applications like segmentation, classification, regression, and detection. Therefore, in this paper, we proposed a collective method using deep learning and radiomics techniques for the survival prediction of brain tumor patients. We first propose a hierarchical channel attention (HAM) module and a multi-scale-aware feature enhancement (MSAFE) to efficiently fuse adjacent hierarchical features in the proposed segmentation model. After segmentation, deep/latent features (LCNN) are extracted from the bottom layer of the proposed segmentation model. Later, we extracted selected radiomics features (histogram, location, and shape) using input images and segmented masks from the proposed segmentation model. Further, the 3D deep learning regressor has been trained for 3D regressor-based deep feature extraction. We proposed the method of overall survival prediction for the brain tumor patients by combining all the meaningful features including clinical features (age) that also favorably contribute to the survival days prediction for the glioma's patients. To predict the survival days for each patient, the selected features are trained to analyze the performance of various regression techniques like random forest (RF), decision tree (DT), and XGBoost. Our proposed combined feature-based method achieved the highest performance for survival days prediction over the state-of-the-art methods. We also perform extensive experiments to show the effectiveness of each feature extraction method. The experimental results infer that deep learning-based features along with radiomic features and clinical features are truly vital paradigms to estimate survival days.
DOI de l'article:10.1002/ima.23010
Enllaç font original:https://onlinelibrary.wiley.com/doi/full/10.1002/ima.23010
Versió de l'article dipositat:info:eu-repo/semantics/publishedVersion
Accès a la llicència d'ús:https://creativecommons.org/licenses/by/3.0/es/
Departament:Enginyeria Informàtica i Matemàtiques
URL Document de llicència:https://repositori.urv.cat/ca/proteccio-de-dades/
Àrees temàtiques:Software
Radiology, nuclear medicine and imaging
Radiology, nuclear medicin
Optics
Imaging science & photographic technology
Health informatics
Engineering, electrical & electronic
Engenharias iv
Electronic, optical and magnetic materials
Electrical and electronic engineering
Computer vision and pattern recognition
Computer science applications
Ciência da computação
Biomedical engineering
Astronomia / física
Paraules clau:Survival prediction
Segmentation
Radiomics
Multimodal brain tumor
Mri
Model
Medical image processing
Deep learning
Brain tumor prognosis
Brain tumor
Entitat:Universitat Rovira i Virgili
Data d'alta del registre:2024-10-12
Cerca el teu registre a:

Fitxers disponibles
FitxerDescripcióFormat
DocumentPrincipalDocumentPrincipalapplication/pdf

Informació

© 2011 Universitat Rovira i Virgili