Repositori institucional URV
Español Català English
TÍTOL:
Multi-institutional generalizability of a plan complexity machine learning model for predicting pre-treatment quality assurance results in radiotherapy. - imarina:9370829

Autor/s de la URV:Hernandez Masgrau, Victor
Autor segons l'article:Claessens M; De Kerf G; Vanreusel V; Mollaert I; Hernandez V; Saez J; Jornet N; Verellen D
Adreça de correu electrònic de l'autor:victor.hernandez@urv.cat
Identificador de l'autor:0000-0003-3770-8486
Any de publicació de la revista:2024
Tipus de publicació:Journal Publications
Referència de l'ítem segons les normes APA:Claessens M; De Kerf G; Vanreusel V; Mollaert I; Hernandez V; Saez J; Jornet N; Verellen D (2024). Multi-institutional generalizability of a plan complexity machine learning model for predicting pre-treatment quality assurance results in radiotherapy.. Physics And Imaging In Radiation Oncology, 29(), 100525-100525. DOI: 10.1016/j.phro.2023.100525
Referència a l'article segons font original:Physics And Imaging In Radiation Oncology. 29 100525-100525
Resum:Background and purposeTreatment plans in radiotherapy are subject to measurement-based pre-treatment verifications. In this study, plan complexity metrics (PCMs) were calculated per beam and used as input features to develop a predictive model. The aim of this study was to determine the robustness against differences in machine type and institutional-specific quality assurance (QA).Material and methodsA number of 567 beams were collected, where 477 passed and 90 failed the pre-treatment QA. Treatment plans of different anatomical regions were included. One type of linear accelerator was represented. For all beams, 16 PCMs were calculated. A random forest classifier was trained to distinct between acceptable and non-acceptable beams. The model was validated on other datasets to investigate its robustness. Firstly, plans for another machine type from the same institution were evaluated. Secondly, an inter-institutional validation was conducted on three datasets from different centres with their associated QA.ResultsIntra-institutionally, the PCMs beam modulation, mean MLC gap, Q1 gap, and Modulation Complexity Score were the most informative to detect failing beams. Eighty-tree percent of the failed beams (15/18) were detected correctly. The model could not detect over-modulated beams of another machine type. Inter-institutionally, the model performance reached higher accuracy for centres with comparable equipment both for treatment and QA as the local institute.ConclusionsThe study demonstrates that the robustness decreases when major differences appear in the QA platform or in planning strategies, but that it is feasible to extrapolate institutional-specific trained models between centres with similar clinical practice. Predictive models should be developed for each machine type.
DOI de l'article:10.1016/j.phro.2023.100525
Enllaç font original:https://www.phiro.science/article/S2405-6316(23)00116-1/fulltext
Versió de l'article dipositat:info:eu-repo/semantics/publishedVersion
Accès a la llicència d'ús:https://creativecommons.org/licenses/by/3.0/es/
Departament:Ciències Mèdiques Bàsiques
URL Document de llicència:https://repositori.urv.cat/ca/proteccio-de-dades/
Àrees temàtiques:Oncology
Radiation
Radiology, nuclear medicine & medical imaging
Radiology, nuclear medicine and imaging
Paraules clau:Machine learning
Multi-institutional validation
Plan complexity
Quality assurance
Radiation therapy
Vmat
Entitat:Universitat Rovira i Virgili
Data d'alta del registre:2024-06-22
Cerca el teu registre a:

Fitxers disponibles
FitxerDescripcióFormat
DocumentPrincipalDocumentPrincipalapplication/pdf

Informació

© 2011 Universitat Rovira i Virgili