Repositori institucional URV
Español Català English
TÍTULO:
Probabilistic Discrete-Time Models for Spreading Processes in Complex Networks: A Review - imarina:9379072

Autor/es de la URV:Arenas Moreno, Alejandro / Gómez Jiménez, Sergio / Granell Martorell, Clara
Autor según el artículo:Granell C; Gómez S; Gómez-Gardeñes J; Arenas A
Direcció de correo del autor:clara.granell@urv.cat
sergio.gomez@urv.cat
alexandre.arenas@urv.cat
Identificador del autor:0000-0003-1820-0062
0000-0003-0937-0334
Año de publicación de la revista:2024
Tipo de publicación:Journal Publications
Referencia de l'ítem segons les normes APA:Granell C; Gómez S; Gómez-Gardeñes J; Arenas A (2024). Probabilistic Discrete-Time Models for Spreading Processes in Complex Networks: A Review. Annalen Der Physik, 536(10), -. DOI: 10.1002/andp.202400078
Referencia al articulo segun fuente origial:Annalen Der Physik. 536 (10):
Resumen:Research into network dynamics of spreading processes typically employs both discrete and continuous time methodologies. Although each approach offers distinct insights, integrating them can be challenging, particularly when maintaining coherence across different time scales. This review focuses on the Microscopic Markov Chain Approach (MMCA), a probabilistic f ramework originally designed for epidemic modeling. MMCA uses discrete dynamics to compute the probabilities of individuals transitioning between epidemiological states. By treating each time step-usually a day-as a discrete event, the approach captures multiple concurrent changes within this time frame. The approach allows to estimate the likelihood of individuals or populations being in specific states, which correspond to distinct epidemiological compartments. This review synthesizes key findings from the application of this approach, providing a comprehensive overview of its utility in understanding epidemic spread.
DOI del artículo:10.1002/andp.202400078
Enlace a la fuente original:https://onlinelibrary.wiley.com/doi/10.1002/andp.202400078
Versión del articulo depositado:info:eu-repo/semantics/publishedVersion
Acceso a la licencia de uso:https://creativecommons.org/licenses/by/3.0/es/
Departamento:Enginyeria Informàtica i Matemàtiques
URL Documento de licencia:https://repositori.urv.cat/ca/proteccio-de-dades/
Áreas temáticas:Physics, multidisciplinary
Physics and astronomy (miscellaneous)
Physics and astronomy (all)
Physics
Matemática / probabilidade e estatística
General physics and astronomy
Filosofía
Engenharias iii
Astronomia / física
Palabras clave:Transmission
Threshol
Networks
Network
Modeling
Metapopulation models
Epidemiology
Epidemics
Dynamics
Contagions
Challenges
Behavior
Entidad:Universitat Rovira i Virgili
Fecha de alta del registro:2024-10-26
Busca tu registro en:

Archivos desponibles
ArchivoDescripciónFormato
DocumentPrincipalDocumentPrincipalapplication/pdf

Información

© 2011 Universitat Rovira i Virgili