Repositori institucional URV
Español Català English
TITLE:
Chaotic Dynamics at the Boundary of a Basin of Attraction via Non-transversal Intersections for a Non-global Smooth Diffeomorphism - imarina:9380947

URV's Author/s:Garijo Real, Antonio
Author, as appears in the article.:Fontich, Ernest; Garijo, Antonio; Jarque, Xavier
Author's mail:antonio.garijo@urv.cat
Author identifier:0000-0002-1503-7514
Journal publication year:2024
Publication Type:Journal Publications
APA:Fontich, Ernest; Garijo, Antonio; Jarque, Xavier (2024). Chaotic Dynamics at the Boundary of a Basin of Attraction via Non-transversal Intersections for a Non-global Smooth Diffeomorphism. Journal Of Nonlinear Science, 34(6), 102-. DOI: 10.1007/s00332-024-10079-7
Papper original source:Journal Of Nonlinear Science. 34 (6): 102-
Abstract:In this paper, we give analytic proofs of the existence of transversal homoclinic points for a family of non-globally smooth diffeomorphisms having the origin as a fixed point which come out as a truncated map governing the local dynamics near a critical period three-cycle associated with the Secant map. Using Moser's version of Birkhoff-Smale's theorem, we prove that the boundary of the basin of attraction of the origin contains a Cantor-like invariant subset such that the restricted dynamics to it is conjugate to the full shift of N-symbols for any integer N >= 2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$N\ge 2$$\end{document} or infinity.
Article's DOI:10.1007/s00332-024-10079-7
Link to the original source:https://link.springer.com/article/10.1007/s00332-024-10079-7
Papper version:info:eu-repo/semantics/publishedVersion
licence for use:https://creativecommons.org/licenses/by/3.0/es/
Department:Enginyeria Informàtica i Matemàtiques
Licence document URL:https://repositori.urv.cat/ca/proteccio-de-dades/
Thematic Areas:Physics, mathematical
Modeling and simulation
Mechanics
Mathematics, applied
Matemática / probabilidade e estatística
General engineering
Engineering (miscellaneous)
Engineering (all)
Applied mathematics
Keywords:Symbolic dynamic
Stable and unstable manifold
Secant map
Periodic points
Homoclinic connection
Basin of attraction
Funding program:Herramientas para el análisis de diagramas de bifurcación en sistemas dinámicos
Funding program action:Proyectos I+D Generación de Conocimiento
Acronym:ATBiD
Project code:PID2020-118281GB-C33
Entity:Universitat Rovira i Virgili
Record's date:2024-09-28
Search your record at:

Available files
FileDescriptionFormat
DocumentPrincipalDocumentPrincipalapplication/pdf

Information

© 2011 Universitat Rovira i Virgili