Repositori institucional URV
Español Català English
TITLE:
Reliable Deep Learning Plant Leaf Disease Classification Light-Chroma Separated BranchesBased on - imarina:9385566

URV's Author/s:Abdellatif Fatahallah Ibrahim Mahmoud, Hatem / Abdelnasser Mohamed Mahmoud, Mohamed / Puig Valls, Domènec Savi / Romaní Also, Santiago
Author, as appears in the article.:Schwarz Schuler, Joao Paulo; Romani, Santiago; Abdel-Nasser, Mohamed; Rashwan, Hatem; Puig, Domenec
Author's mail:domenec.puig@urv.cat
santiago.romani@urv.cat
hatem.abdellatif@urv.cat
mohamed.abdelnasser@urv.cat
Author identifier:0000-0002-0562-4205
0000-0001-6673-9615
0000-0001-5421-1637
0000-0002-1074-2441
Journal publication year:2021
Publication Type:Proceedings Paper
APA:Schwarz Schuler, Joao Paulo; Romani, Santiago; Abdel-Nasser, Mohamed; Rashwan, Hatem; Puig, Domenec (2021). Reliable Deep Learning Plant Leaf Disease Classification Light-Chroma Separated BranchesBased on. Amsterdam: IOS Press
Papper original source:Frontiers In Artificial Intelligence And Applications. 339 375-382
Abstract:The Food and Agriculture Organization (FAO) estimated that plant diseases cost the world economy $220 billion in 2019. In this paper, we propose a lightweight Deep Convolutional Neural Network (DCNN) for automatic and reliable plant leaf diseases classification. The proposed method starts by converting input images of plant leaves from RGB to CIE LAB coordinates. Then, L and AB channels go into separate branches along with the first three layers of a modified Inception V3 architecture. This approach saves from 1/3 to 1/2 of the parameters in the separated branches. It also provides better classification reliability when perturbing the original RGB images with several types of noise (salt and pepper, blurring, motion blurring and occlusions). These types of noise simulate common image variability found in the natural environment. We hypothesize that the filters in the AB branch provide better resistance to these types of variability due to their relatively low frequency in the image-space domain.
Article's DOI:10.3233/FAIA210157
Link to the original source:https://ebooks.iospress.nl/doi/10.3233/FAIA210157
Papper version:info:eu-repo/semantics/publishedVersion
licence for use:https://creativecommons.org/licenses/by/3.0/es/
Department:Enginyeria Informàtica i Matemàtiques
Licence document URL:https://repositori.urv.cat/ca/proteccio-de-dades/
Thematic Areas:Artificial intelligence
Ciências agrárias i
Comunicació i informació
Engenharias iii
Engenharias iv
General o multidisciplinar
Información y documentación
Interdisciplinar
Medicina ii
Keywords:Classification
Cnn
Computer vision
Dcnn
Deep learnin
Deep learning
Plant leaf disease
Plant village
Entity:Universitat Rovira i Virgili
Record's date:2024-10-12
Search your record at:

Available files
FileDescriptionFormat
DocumentPrincipalDocumentPrincipalapplication/pdf

Information

© 2011 Universitat Rovira i Virgili