Repositori institucional URV
Español Català English
TÍTULO:
Reliable Deep Learning Plant Leaf Disease Classification Light-Chroma Separated BranchesBased on - imarina:9385566

Autor/es de la URV:Abdellatif Fatahallah Ibrahim Mahmoud, Hatem / Abdelnasser Mohamed Mahmoud, Mohamed / Puig Valls, Domènec Savi / Romaní Also, Santiago
Autor según el artículo:Schwarz Schuler, Joao Paulo; Romani, Santiago; Abdel-Nasser, Mohamed; Rashwan, Hatem; Puig, Domenec
Direcció de correo del autor:domenec.puig@urv.cat
santiago.romani@urv.cat
hatem.abdellatif@urv.cat
mohamed.abdelnasser@urv.cat
Identificador del autor:0000-0002-0562-4205
0000-0001-6673-9615
0000-0001-5421-1637
0000-0002-1074-2441
Año de publicación de la revista:2021
Tipo de publicación:Proceedings Paper
Referencia de l'ítem segons les normes APA:Schwarz Schuler, Joao Paulo; Romani, Santiago; Abdel-Nasser, Mohamed; Rashwan, Hatem; Puig, Domenec (2021). Reliable Deep Learning Plant Leaf Disease Classification Light-Chroma Separated BranchesBased on. Amsterdam: IOS Press
Referencia al articulo segun fuente origial:Frontiers In Artificial Intelligence And Applications. 339 375-382
Resumen:The Food and Agriculture Organization (FAO) estimated that plant diseases cost the world economy $220 billion in 2019. In this paper, we propose a lightweight Deep Convolutional Neural Network (DCNN) for automatic and reliable plant leaf diseases classification. The proposed method starts by converting input images of plant leaves from RGB to CIE LAB coordinates. Then, L and AB channels go into separate branches along with the first three layers of a modified Inception V3 architecture. This approach saves from 1/3 to 1/2 of the parameters in the separated branches. It also provides better classification reliability when perturbing the original RGB images with several types of noise (salt and pepper, blurring, motion blurring and occlusions). These types of noise simulate common image variability found in the natural environment. We hypothesize that the filters in the AB branch provide better resistance to these types of variability due to their relatively low frequency in the image-space domain.
DOI del artículo:10.3233/FAIA210157
Enlace a la fuente original:https://ebooks.iospress.nl/doi/10.3233/FAIA210157
Versión del articulo depositado:info:eu-repo/semantics/publishedVersion
Acceso a la licencia de uso:https://creativecommons.org/licenses/by/3.0/es/
Departamento:Enginyeria Informàtica i Matemàtiques
URL Documento de licencia:https://repositori.urv.cat/ca/proteccio-de-dades/
Áreas temáticas:Artificial intelligence
Ciências agrárias i
Comunicació i informació
Engenharias iii
Engenharias iv
General o multidisciplinar
Información y documentación
Interdisciplinar
Medicina ii
Palabras clave:Classification
Cnn
Computer vision
Dcnn
Deep learnin
Deep learning
Plant leaf disease
Plant village
Entidad:Universitat Rovira i Virgili
Fecha de alta del registro:2024-10-12
Busca tu registro en:

Archivos desponibles
ArchivoDescripciónFormato
DocumentPrincipalDocumentPrincipalapplication/pdf

Información

© 2011 Universitat Rovira i Virgili