Repositori institucional URV
Español Català English
TÍTULO:
Bayesian estimation of information-theoretic metrics for sparsely sampled distributions - imarina:9386996

Autor/es de la URV:Font Pomarol, Lluc / Guimera Manrique, Roger / Piga, Angelo / Sales Pardo, Marta
Autor según el artículo:Piga, Angelo; Font-Pomarol, Lluc; Sales-Pardo, Marta; Guimera, Roger
Direcció de correo del autor:marta.sales@urv.cat
lluc.fonti@estudiants.urv.cat
lluc.fonti@estudiants.urv.cat
roger.guimera@urv.cat
Identificador del autor:0000-0002-8140-6525
0000-0002-3597-4310
Año de publicación de la revista:2024
Tipo de publicación:Journal Publications
Referencia de l'ítem segons les normes APA:Piga, Angelo; Font-Pomarol, Lluc; Sales-Pardo, Marta; Guimera, Roger (2024). Bayesian estimation of information-theoretic metrics for sparsely sampled distributions. Chaos Solitons & Fractals, 180(), 114564-. DOI: 10.1016/j.chaos.2024.114564
Referencia al articulo segun fuente origial:Chaos Solitons & Fractals. 180 114564-
Resumen:Estimating the Shannon entropy of a discrete distribution from which we have only observed a small sample is challenging. Estimating other information-theoretic metrics, such as the Kullback-Leibler divergence between two sparsely sampled discrete distributions, is even harder. Here, we propose a fast, semi-analytical estimator for sparsely sampled distributions. Its derivation is grounded in probabilistic considerations and uses a hierarchical Bayesian approach to extract as much information as possible from the few observations available. Our approach provides estimates of the Shannon entropy with precision at least comparable to the benchmarks we consider, and most often higher; it does so across diverse distributions with very different properties. Our method can also be used to obtain accurate estimates of other information-theoretic metrics, including the notoriously challenging Kullback-Leibler divergence. Here, again, our approach has less bias, overall, than the benchmark estimators we consider.
DOI del artículo:10.1016/j.chaos.2024.114564
Enlace a la fuente original:https://www.sciencedirect.com/science/article/pii/S0960077924001152?via%3Dihub
Versión del articulo depositado:info:eu-repo/semantics/publishedVersion
Acceso a la licencia de uso:https://creativecommons.org/licenses/by/3.0/es/
Departamento:Enginyeria Química
URL Documento de licencia:https://repositori.urv.cat/ca/proteccio-de-dades/
Áreas temáticas:Applied mathematics
Astronomia / física
Ciência da computação
Ciências biológicas i
Ciências biológicas ii
Direito
Economia
Engenharias i
Engenharias ii
Engenharias iii
Engenharias iv
General mathematics
General physics and astronomy
Geociências
Interdisciplinar
Matemática / probabilidade e estatística
Materiais
Mathematical physics
Mathematics (all)
Mathematics (miscellaneous)
Mathematics, applied
Mathematics, interdisciplinary applications
Physics
Physics and astronomy (all)
Physics and astronomy (miscellaneous)
Physics, mathematical
Physics, multidisciplinary
Química
Statistical and nonlinear physics
Palabras clave:Bayesian estimation
Entropy estimation
Inferenc
Information theor
Information theory
Kullback-leibler divergence
Kullback–leibler divergence
Shannon entropy
Sparse sampling
Entidad:Universitat Rovira i Virgili
Fecha de alta del registro:2024-10-19
Busca tu registro en:

Archivos desponibles
ArchivoDescripciónFormato
DocumentPrincipalDocumentPrincipalapplication/pdf

Información

© 2011 Universitat Rovira i Virgili