Autor segons l'article: Maite Novo; Ramon Gonzalez; Pilar Morales; Jordi Tronchoni; Gustavo Cordero-Bueso; Enrico Vaudano; Manuel Quirós; Rafael Torres-Pérez; Eva Valero
Departament: Bioquímica i Biotecnologia
Autor/s de la URV: NOVO MOLINERO, MARIA TERESA; Ramon Gonzalez; Pilar Morales; Jordi Tronchoni; Gustavo Cordero-Bueso; Enrico Vaudano; Manuel Quirós; Rafael Torres-Pérez; Eva Valero
Paraules clau: Osmotic stress GID-complex Endomembrane system
Resum: Adaptation to changes in osmolarity is fundamental for the survival of living cells, and has implications in food and industrial biotechnology. It has been extensively studied in the yeast Saccharomyces cerevisiae, where the Hog1 stress activated protein kinase was discovered about 20 years ago. Hog1 is the core of the intracellular signaling pathway that governs the adaptive response to osmotic stress in this species. The main endpoint of this program is synthesis and intracellular retention of glycerol, as a compatible osmolyte. Despite many details of the signaling pathways and yeast responses to osmotic challenges have already been described, genome-wide approaches are contributing to refine our knowledge of yeast adaptation to hypertonic media. In this work, we used a quantitative fitness analysis approach in order to deepen our understanding of the interplay between yeast cells and the osmotic environment. Genetic requirements for proper growth under osmotic stress showed both common and specific features when hypertonic conditions were induced by either glucose or sorbitol. Tolerance to high-glucose content requires mitochondrial function, while defective protein targeting to peroxisome, GID-complex function (involved in negative regulation of gluconeogenesis), or chromatin dynamics, result in poor survival to sorbitol-induced osmotic stress. On the other side, the competitive disadvantage of yeast strains defective in the endomembrane system is relieved by hypertonic conditions. This finding points to the Golgi-endosome system as one of the main cell components negatively affected by hyperosmolarity. Most of the biological processes highlighted in this analysis had not been previously related to osmotic stress but are probably relevant in an ecological and evolutionary context.
Grup de recerca: Grup de Recerca en Nutrigenòmica
Àrees temàtiques: Biochemistry and technology Bioquímica y tecnología Bioquímica i biotecnologia
Accès a la llicència d'ús: https://creativecommons.org/licenses/by/3.0/es/
ISSN: 1664-302X
Identificador de l'autor: 0000-0002-2454-1990; n/a; 0000-0002-0130-6111; 0000-0001-9227-2713; 0000-0003-1538-066X; 0000-0002-2091-1464; n/a; n/a; n/a
Data d'alta del registre: 2016-11-25
Volum de revista: 7
Versió de l'article dipositat: info:eu-repo/semantics/publishedVersion
Enllaç font original: https://www.frontiersin.org/articles/10.3389/fmicb.2016.01545/full
URL Document de llicència: https://repositori.urv.cat/ca/proteccio-de-dades/
DOI de l'article: 10.3389/fmicb.2016.01545
Entitat: Universitat Rovira i Virgili
Any de publicació de la revista: 2016
Pàgina inicial: Art.num. 1545
Tipus de publicació: Article Artículo Article