Articles producció científica> Bioquímica i Biotecnologia

New genes involved in osmotic stress tolerance in saccharomyces cerevisiae

  • Dades identificatives

    Identificador: PC:1989
    Autors:
    Maite NovoRamon GonzalezPilar MoralesJordi TronchoniGustavo Cordero-BuesoEnrico VaudanoManuel QuirósRafael Torres-PérezEva Valero
    Resum:
    Adaptation to changes in osmolarity is fundamental for the survival of living cells, and has implications in food and industrial biotechnology. It has been extensively studied in the yeast Saccharomyces cerevisiae, where the Hog1 stress activated protein kinase was discovered about 20 years ago. Hog1 is the core of the intracellular signaling pathway that governs the adaptive response to osmotic stress in this species. The main endpoint of this program is synthesis and intracellular retention of glycerol, as a compatible osmolyte. Despite many details of the signaling pathways and yeast responses to osmotic challenges have already been described, genome-wide approaches are contributing to refine our knowledge of yeast adaptation to hypertonic media. In this work, we used a quantitative fitness analysis approach in order to deepen our understanding of the interplay between yeast cells and the osmotic environment. Genetic requirements for proper growth under osmotic stress showed both common and specific features when hypertonic conditions were induced by either glucose or sorbitol. Tolerance to high-glucose content requires mitochondrial function, while defective protein targeting to peroxisome, GID-complex function (involved in negative regulation of gluconeogenesis), or chromatin dynamics, result in poor survival to sorbitol-induced osmotic stress. On the other side, the competitive disadvantage of yeast strains defective in the endomembrane system is relieved by hypertonic conditions. This finding points to the Golgi-endosome system as one of the main cell components negatively affected by hyperosmolarity. Most of the biological processes highlighted in this analysis had not been previously related to osmotic stress but are probably relevant in an ecological and evolu
  • Altres:

    Autor segons l'article: Maite Novo; Ramon Gonzalez; Pilar Morales; Jordi Tronchoni; Gustavo Cordero-Bueso; Enrico Vaudano; Manuel Quirós; Rafael Torres-Pérez; Eva Valero
    Departament: Bioquímica i Biotecnologia
    Autor/s de la URV: NOVO MOLINERO, MARIA TERESA; Ramon Gonzalez; Pilar Morales; Jordi Tronchoni; Gustavo Cordero-Bueso; Enrico Vaudano; Manuel Quirós; Rafael Torres-Pérez; Eva Valero
    Paraules clau: Osmotic stress GID-complex Endomembrane system
    Resum: Adaptation to changes in osmolarity is fundamental for the survival of living cells, and has implications in food and industrial biotechnology. It has been extensively studied in the yeast Saccharomyces cerevisiae, where the Hog1 stress activated protein kinase was discovered about 20 years ago. Hog1 is the core of the intracellular signaling pathway that governs the adaptive response to osmotic stress in this species. The main endpoint of this program is synthesis and intracellular retention of glycerol, as a compatible osmolyte. Despite many details of the signaling pathways and yeast responses to osmotic challenges have already been described, genome-wide approaches are contributing to refine our knowledge of yeast adaptation to hypertonic media. In this work, we used a quantitative fitness analysis approach in order to deepen our understanding of the interplay between yeast cells and the osmotic environment. Genetic requirements for proper growth under osmotic stress showed both common and specific features when hypertonic conditions were induced by either glucose or sorbitol. Tolerance to high-glucose content requires mitochondrial function, while defective protein targeting to peroxisome, GID-complex function (involved in negative regulation of gluconeogenesis), or chromatin dynamics, result in poor survival to sorbitol-induced osmotic stress. On the other side, the competitive disadvantage of yeast strains defective in the endomembrane system is relieved by hypertonic conditions. This finding points to the Golgi-endosome system as one of the main cell components negatively affected by hyperosmolarity. Most of the biological processes highlighted in this analysis had not been previously related to osmotic stress but are probably relevant in an ecological and evolutionary context.
    Grup de recerca: Grup de Recerca en Nutrigenòmica
    Àrees temàtiques: Biochemistry and technology Bioquímica y tecnología Bioquímica i biotecnologia
    Accès a la llicència d'ús: https://creativecommons.org/licenses/by/3.0/es/
    ISSN: 1664-302X
    Identificador de l'autor: 0000-0002-2454-1990; n/a; 0000-0002-0130-6111; 0000-0001-9227-2713; 0000-0003-1538-066X; 0000-0002-2091-1464; n/a; n/a; n/a
    Data d'alta del registre: 2016-11-25
    Volum de revista: 7
    Versió de l'article dipositat: info:eu-repo/semantics/publishedVersion
    Enllaç font original: https://www.frontiersin.org/articles/10.3389/fmicb.2016.01545/full
    URL Document de llicència: https://repositori.urv.cat/ca/proteccio-de-dades/
    DOI de l'article: 10.3389/fmicb.2016.01545
    Entitat: Universitat Rovira i Virgili
    Any de publicació de la revista: 2016
    Pàgina inicial: Art.num. 1545
    Tipus de publicació: Article Artículo Article
  • Paraules clau:

    Osmotic stress
    Saccharomyces cerevisiae -- Biotecnologia
    Peroxisome
    Osmotic stress
    GID-complex
    Endomembrane system
    Biochemistry and technology
    Bioquímica y tecnología
    Bioquímica i biotecnologia
    1664-302X
  • Documents:

  • Cerca a google

    Search to google scholar