Articles producció científica> Enginyeria Informàtica i Matemàtiques

Closed formulae for the strong metric dimension of lexicographic product graphs

  • Dades identificatives

    Identificador: PC:1990
    Autors:
    Juan A. Rodríguez-VelázquezDorota KuziakIsmael G. Yero
    Resum:
    Given a connected graph G, a vertex w ¿ V(G) strongly resolves two vertices u,v ¿ V(G) if there exists some shortest u - w path containing v or some shortest v - w path containing u. A set S of vertices is a strong metric generator for G if every pair of vertices of G is strongly resolved by some vertex of S. The smallest cardinality of a strong metric generator for G is called the strong metric dimension of G. In this paper we obtain several relationships between the strong metric dimension of the lexicographic product of graphs and the strong metric dimension of its factor graphs. © 2016, University of Zielona Gora.
  • Altres:

    Autor segons l'article: Juan A. Rodríguez-Velázquez; Dorota Kuziak; Ismael G. Yero
    Departament: Enginyeria Informàtica i Matemàtiques
    Autor/s de la URV: RODRÍGUEZ VELÁZQUEZ, JUAN ALBERTO; Dorota Kuziak; Ismael G. Yero
    Paraules clau: Strong metric dimension Lexicographic product graphs Strong metric basis
    Resum: Given a connected graph G, a vertex w ¿ V(G) strongly resolves two vertices u,v ¿ V(G) if there exists some shortest u - w path containing v or some shortest v - w path containing u. A set S of vertices is a strong metric generator for G if every pair of vertices of G is strongly resolved by some vertex of S. The smallest cardinality of a strong metric generator for G is called the strong metric dimension of G. In this paper we obtain several relationships between the strong metric dimension of the lexicographic product of graphs and the strong metric dimension of its factor graphs. © 2016, University of Zielona Gora.
    Grup de recerca: Matemática Discreta
    Àrees temàtiques: Enginyeria informàtica Ingeniería informática Computer engineering
    Accès a la llicència d'ús: https://creativecommons.org/licenses/by/3.0/es/
    ISSN: 1234-3099
    Identificador de l'autor: 0000-0002-9082-7647; N/A; 0000-0002-1619-1572
    Data d'alta del registre: 2016-12-01
    Pàgina final: 1064
    Volum de revista: 36
    Versió de l'article dipositat: info:eu-repo/semantics/publishedVersion
    URL Document de llicència: https://repositori.urv.cat/ca/proteccio-de-dades/
    Entitat: Universitat Rovira i Virgili
    Any de publicació de la revista: 2016
    Pàgina inicial: 1051
    Tipus de publicació: Article Artículo Article
  • Paraules clau:

    Grafs, Teoria de
    Strong metric dimension
    Lexicographic product graphs
    Strong metric basis
    Enginyeria informàtica
    Ingeniería informática
    Computer engineering
    1234-3099
  • Documents:

  • Cerca a google

    Search to google scholar