Autor segons l'article: Alex Arenas; Richard K. Darst; Clara Granell; Jari Saramäki; Sergio Gómez; Santo Fortunato
Departament: Enginyeria Informàtica i Matemàtiques
Autor/s de la URV: ARENAS MORENO, ALEJANDRO; Richard K. Darst; Clara Granell; Jari Saramäki; GÓMEZ JIMÉNEZ, SERGIO; Santo Fortunato
Paraules clau: Human dynamics model Networks
Resum: Most complex systems are intrinsically dynamic in nature. The evolution of a dynamic complex system is typically represented as a sequence of snapshots, where each snapshot describes the configuration of the system at a particular instant of time. This is often done by using constant intervals but a better approach would be to define dynamic intervals that match the evolution of the system's configuration. To this end, we propose a method that aims at detecting evolutionary changes in the configuration of a complex system, and generates intervals accordingly. We show that evolutionary timescales can be identified by looking for peaks in the similarity between the sets of events on consecutive time intervals of data. Tests on simple toy models reveal that the technique is able to detect evolutionary timescales of time-varying data both when the evolution is smooth as well as when it changes sharply. This is further corroborated by analyses of several real datasets. Our method is scalable to extremely large datasets and is computationally efficient. This allows a quick, parameter-free detection of multiple timescales in the evolution of a complex system.
Grup de recerca: Algorithms embedded in Physical Systems
Àrees temàtiques: Computer engineering Ingeniería informática Enginyeria informàtica
Accès a la llicència d'ús: https://creativecommons.org/licenses/by/3.0/es/
ISSN: 2045-2322
Identificador de l'autor: 0000-0003-0937-0334; n/a; n/a; n/a; 0000-0003-1820-0062; n/a
Data d'alta del registre: 2017-01-17
Volum de revista: 6
Versió de l'article dipositat: info:eu-repo/semantics/publishedVersion
Enllaç font original: https://www.nature.com/articles/srep39713
URL Document de llicència: https://repositori.urv.cat/ca/proteccio-de-dades/
DOI de l'article: 10.1038/srep39713
Entitat: Universitat Rovira i Virgili
Any de publicació de la revista: 2016
Pàgina inicial: Art.num. 39713
Tipus de publicació: Article Artículo Article