Articles producció científica> Enginyeria Electrònica, Elèctrica i Automàtica

Baitmet, a computational approach for GC¿MS library-driven metabolite profiling

  • Dades identificatives

    Identificador: PC:2923
  • Autors:

    Brezmes, J.
    Domingo-Almenara, X.
    Venturini, G.
    Vivó-Truyols, G.
    Perera, A.
    Vinaixa, M.
  • Altres:

    Autor segons l'article: Brezmes, J.; Domingo-Almenara, X.; Venturini, G.; Vivó-Truyols, G.; Perera, A.; Vinaixa, M.
    Departament: Enginyeria Electrònica, Elèctrica i Automàtica
    Autor/s de la URV: BREZMES LLECHA, JESÚS JORGE; Domingo-Almenara, X.; Venturini, G.; Vivó-Truyols, G.; Perera, A.; VINAIXA CREVILLENT, MARIA
    Paraules clau: metabolomics mass spectrometry Gas Chromatography
    Resum: Introduction: Current computational tools for gas chromatography—mass spectrometry (GC–MS) metabolomics profiling do not focus on metabolite identification, that still remains as the entire workflow bottleneck and it relies on manual data reviewing. Metabolomics advent has fostered the development of public metabolite repositories containing mass spectra and retention indices, two orthogonal properties needed for metabolite identification. Such libraries can be used for library-driven compound profiling of large datasets produced in metabolomics, a complementary approach to current GC–MS non-targeted data analysis solutions that can eventually help to assess metabolite identities more efficiently. Results: This paper introduces Baitmet, an integrated open-source computational tool written in R enclosing a complete workflow to perform high-throughput library-driven GC–MS profiling in complex samples. Baitmet capabilities were assayed in a metabolomics study involving 182 human serum samples where a set of 61 metabolites were profiled given a reference library. Conclusions: Baitmet allows high-throughput and wide scope interrogation on the metabolic composition of complex samples analyzed using GC–MS via freely available spectral data. Baitmet is freely available at http://CRAN.R-project.org/package=baitmet.
    Grup de recerca: Signal Processing for Omic Sciences
    Àrees temàtiques: Electronic engineering Ingeniería electrónica Enginyeria electrònica
    Accès a la llicència d'ús: https://creativecommons.org/licenses/by/3.0/es/
    ISSN: 1573-3882
    Identificador de l'autor: 0000-0002-7704-8550; ; ; ; ; 0000-0001-9804-0171
    Data d'alta del registre: 2017-10-23
    Volum de revista: 13
    Versió de l'article dipositat: info:eu-repo/semantics/acceptedVersion
    Enllaç font original: https://link.springer.com/article/10.1007%2Fs11306-017-1223-x
    Programa de finançament: altres; Fundação de Amparo à Pesquisa do Estado de São Paulo; FAPESP; 2012/12042-7 plan; MINECO Grant; SEIDI; TEC2015¿69076-P plan; MINECO Grant; SEIDI; TEC2014¿60337-R
    URL Document de llicència: https://repositori.urv.cat/ca/proteccio-de-dades/
    DOI de l'article: 10.1007/s11306-017-1223-x
    Entitat: Universitat Rovira i Virgili
    Any de publicació de la revista: 2017
    Pàgina inicial: 93
    Tipus de publicació: Article Artículo Article
  • Paraules clau:

    Espectrometria de masses
    Cromatografia de gasos
    metabolomics
    mass spectrometry
    Gas Chromatography
    Electronic engineering
    Ingeniería electrónica
    Enginyeria electrònica
    1573-3882
  • Documents:

  • Cerca a google

    Search to google scholar