Articles producció científica> Ciències Mèdiques Bàsiques

Biases and adjustments in nutritional assessments from dietary questionnaires

  • Dades identificatives

    Identificador: imarina:3074578
    Autors:
    Arija VAbellana RRibot BRamon J
    Resum:
    In nutritional epidemiology, it is essential to use Food Consumption Assessment Methods that have been validated and accepted by the international community for estimating food consumption of individuals and populations. This assessment must be made with the highest quality possible so as to avoid, as far as possible, sources of error and confusion in the processes. The qualities that are required in a measurement method are validity and accuracy; validity being the main factor. Lack of validity produces biases, or systematic errors. These can reside in the process of subject selection, or processes of information gathering where the lack of accuracy produces random errors. For many nutrients, the intra-individual variances are due to many factors such as day-of-the-week or season, and could create problems in the data analyses. Adjustments are needed to minimize these effects. Confounding factors may over- or under-state the real magnitude of the observed association, or even alter the direction of the real association. Total energy intake can be a confounding variable when studying a relationship between nutrient intake and disease risk. To control for this effect several approximations are proposed such as nutrient densities, standard multivariate models and the nutrient residual model. Copyright AULA MEDICA EDICIONES 2015. Published by AULA MEDICA. All rights reserved.
  • Altres:

    Autor segons l'article: Arija V; Abellana R; Ribot B; Ramon J
    Departament: Ciències Mèdiques Bàsiques
    Autor/s de la URV: Arija Val, Maria Victoria / RIBOT SERRA, BLANCA
    Paraules clau: Validity Repetitiveness Random errors Quality Precision Methods of evaluating food consumption Exactness Evaluation of systematic nutritional errors Confounding factors Biases Adjustments
    Resum: In nutritional epidemiology, it is essential to use Food Consumption Assessment Methods that have been validated and accepted by the international community for estimating food consumption of individuals and populations. This assessment must be made with the highest quality possible so as to avoid, as far as possible, sources of error and confusion in the processes. The qualities that are required in a measurement method are validity and accuracy; validity being the main factor. Lack of validity produces biases, or systematic errors. These can reside in the process of subject selection, or processes of information gathering where the lack of accuracy produces random errors. For many nutrients, the intra-individual variances are due to many factors such as day-of-the-week or season, and could create problems in the data analyses. Adjustments are needed to minimize these effects. Confounding factors may over- or under-state the real magnitude of the observed association, or even alter the direction of the real association. Total energy intake can be a confounding variable when studying a relationship between nutrient intake and disease risk. To control for this effect several approximations are proposed such as nutrient densities, standard multivariate models and the nutrient residual model. Copyright AULA MEDICA EDICIONES 2015. Published by AULA MEDICA. All rights reserved.
    Àrees temàtiques: Zootecnia / recursos pesqueiros Saúde coletiva Química Psicología Planejamento urbano e regional / demografia Odontología Nutrition and dietetics Nutrition & dietetics Nutrição Medicine (miscellaneous) Medicina veterinaria Medicina iii Medicina ii Medicina i Interdisciplinar Historia Geociências Farmacia Engenharias iii Engenharias ii Enfermagem Educação física Ciências biológicas iii Ciências biológicas ii Ciências biológicas i Ciências ambientais Ciências agrárias i Ciência de alimentos Biotecnología Biodiversidade Administração, ciências contábeis e turismo
    Accès a la llicència d'ús: https://creativecommons.org/licenses/by/3.0/es/
    ISSN: 02121611
    Adreça de correu electrònic de l'autor: victoria.arija@urv.cat
    Identificador de l'autor: 0000-0002-1758-0975
    Data d'alta del registre: 2024-08-24
    Versió de l'article dipositat: info:eu-repo/semantics/publishedVersion
    Enllaç font original: http://www.aulamedica.es/nh/pdf/8759.pdf
    URL Document de llicència: https://repositori.urv.cat/ca/proteccio-de-dades/
    Referència a l'article segons font original: Nutricion Hospitalaria. 31 (Supl. 3): 113-118
    Referència de l'ítem segons les normes APA: Arija V; Abellana R; Ribot B; Ramon J (2015). Biases and adjustments in nutritional assessments from dietary questionnaires. Nutricion Hospitalaria, 31(Supl. 3), 113-118. DOI: 10.3305/nh.2015.31.sup3.8759
    DOI de l'article: 10.3305/nh.2015.31.sup3.8759
    Entitat: Universitat Rovira i Virgili
    Any de publicació de la revista: 2015
    Tipus de publicació: Journal Publications
  • Paraules clau:

    Medicine (Miscellaneous),Nutrition & Dietetics,Nutrition and Dietetics
    Validity
    Repetitiveness
    Random errors
    Quality
    Precision
    Methods of evaluating food consumption
    Exactness
    Evaluation of systematic nutritional errors
    Confounding factors
    Biases
    Adjustments
    Zootecnia / recursos pesqueiros
    Saúde coletiva
    Química
    Psicología
    Planejamento urbano e regional / demografia
    Odontología
    Nutrition and dietetics
    Nutrition & dietetics
    Nutrição
    Medicine (miscellaneous)
    Medicina veterinaria
    Medicina iii
    Medicina ii
    Medicina i
    Interdisciplinar
    Historia
    Geociências
    Farmacia
    Engenharias iii
    Engenharias ii
    Enfermagem
    Educação física
    Ciências biológicas iii
    Ciências biológicas ii
    Ciências biológicas i
    Ciências ambientais
    Ciências agrárias i
    Ciência de alimentos
    Biotecnología
    Biodiversidade
    Administração, ciências contábeis e turismo
  • Documents:

  • Cerca a google

    Search to google scholar