Articles producció científica> Enginyeria Informàtica i Matemàtiques

Learning ensemble classifiers for diabetic retinopathy assessment

  • Dades identificatives

    Identificador: imarina:5131710
  • Autors:

    Saleh, Emran
    Blaszczynski, Jerzy
    Moreno, Antonio
    Valls, Aida
    Romero-Aroca, Pedro
    de la Riya-Fernandez, Sofia
    Slowinsk, Roman
  • Altres:

    Autor segons l'article: Saleh, Emran; Blaszczynski, Jerzy; Moreno, Antonio; Valls, Aida; Romero-Aroca, Pedro; de la Riya-Fernandez, Sofia; Slowinsk, Roman;
    Departament: Enginyeria Informàtica i Matemàtiques
    Autor/s de la URV: ALI, EMRAN SALEH ALI / Moreno Ribas, Antonio / Romero Aroca, Pedro / Valls Mateu, Aïda
    Paraules clau: Uncertainty Rule-based models Random forest Medical informatics Fuzzy decision trees Ensemble classifiers Dominance-based rough set approach Diabetic retinopathy Decision support systems Decision making Data mining Class imbalance random forest fuzzy decision trees ensemble classifiers dominance-based rough set approach diabetic retinopathy decision support systems class imbalance
    Resum: Diabetic retinopathy is one of the most common comorbidities of diabetes. Unfortunately, the recommended annual screening of the eye fundus of diabetic patients is too resource-consuming. Therefore, it is necessary to develop tools that may help doctors to determine the risk of each patient to attain this condition, so that patients with a low risk may be screened less frequently and the use of resources can be improved. This paper explores the use of two kinds of ensemble classifiers learned from data: fuzzy random forest and dominance-based rough set balanced rule ensemble. These classifiers use a small set of attributes which represent main risk factors to determine whether a patient is in risk of developing diabetic retinopathy. The levels of specificity and sensitivity obtained in the presented study are over 80%. This study is thus a first successful step towards the construction of a personalized decision support system that could help physicians in daily clinical practice.
    Àrees temàtiques: Saúde coletiva Medicine (miscellaneous) Medicina ii Medicina i Medical informatics Interdisciplinar Engineering, biomedical Engenharias iv Computer science, artificial intelligence Ciência da computação Artificial intelligence
    Accès a la llicència d'ús: https://creativecommons.org/licenses/by/3.0/es/
    Adreça de correu electrònic de l'autor: antonio.moreno@urv.cat pedro.romero@urv.cat aida.valls@urv.cat
    Identificador de l'autor: 0000-0003-3945-2314 0000-0002-7061-8987 0000-0003-3616-7809
    Data d'alta del registre: 2024-09-07
    Versió de l'article dipositat: info:eu-repo/semantics/acceptedVersion
    Enllaç font original: https://www.sciencedirect.com/science/article/pii/S0933365717300593
    URL Document de llicència: https://repositori.urv.cat/ca/proteccio-de-dades/
    Referència a l'article segons font original: Artificial Intelligence In Medicine. 85 50-63
    Referència de l'ítem segons les normes APA: Saleh, Emran; Blaszczynski, Jerzy; Moreno, Antonio; Valls, Aida; Romero-Aroca, Pedro; de la Riya-Fernandez, Sofia; Slowinsk, Roman; (2018). Learning ensemble classifiers for diabetic retinopathy assessment. Artificial Intelligence In Medicine, 85(), 50-63. DOI: 10.1016/j.artmed.2017.09.006
    DOI de l'article: 10.1016/j.artmed.2017.09.006
    Entitat: Universitat Rovira i Virgili
    Any de publicació de la revista: 2018
    Tipus de publicació: Journal Publications
  • Paraules clau:

    Artificial Intelligence,Computer Science, Artificial Intelligence,Engineering, Biomedical,Medical Informatics,Medicine (Miscellaneous)
    Uncertainty
    Rule-based models
    Random forest
    Medical informatics
    Fuzzy decision trees
    Ensemble classifiers
    Dominance-based rough set approach
    Diabetic retinopathy
    Decision support systems
    Decision making
    Data mining
    Class imbalance
    random forest
    fuzzy decision trees
    ensemble classifiers
    dominance-based rough set approach
    diabetic retinopathy
    decision support systems
    class imbalance
    Saúde coletiva
    Medicine (miscellaneous)
    Medicina ii
    Medicina i
    Medical informatics
    Interdisciplinar
    Engineering, biomedical
    Engenharias iv
    Computer science, artificial intelligence
    Ciência da computação
    Artificial intelligence
  • Documents:

  • Cerca a google

    Search to google scholar