Articles producció científica> Enginyeria Informàtica i Matemàtiques

Some basics on privacy techniques, anonymization and their big data challenges

  • Dades identificatives

    Identificador: imarina:5132532
    Autors:
    Salas J, Domingo-Ferrer J
    Resum:
    © 2018, Springer International Publishing AG, part of Springer Nature. With the progress in the information and communication fields, new opportunities and technologies for statistical analysis, knowledge discovery, data mining, and many other research areas have emerged, together with new challenges for privacy and data protection. Nowadays several personal records are kept in computerized databases. Personal data is collected and kept in census databases, medical databases, employee databases, among others. There has always been an asymmetry between the benefits of computerized databases and the rights of individual data subjects. Some data protection principles can be derived from the legal framework. In this survey, we present some basic cryptographic and non-cryptographic techniques that may be used for enhancing privacy, we focus mainly on anonymization in databases and networks, discuss some differences and interactions among the well-known models of k-anonymity and differential privacy and finally present some challenges to privacy that come from big data analytics.
  • Altres:

    Autor segons l'article: Salas J, Domingo-Ferrer J
    Departament: Enginyeria Informàtica i Matemàtiques
    Autor/s de la URV: Domingo Ferrer, Josep
    Paraules clau: Privacy enhancing technologies Privacy by design statistical disclosure Differential privacy Control k-anonymity Big data privacy
    Resum: © 2018, Springer International Publishing AG, part of Springer Nature. With the progress in the information and communication fields, new opportunities and technologies for statistical analysis, knowledge discovery, data mining, and many other research areas have emerged, together with new challenges for privacy and data protection. Nowadays several personal records are kept in computerized databases. Personal data is collected and kept in census databases, medical databases, employee databases, among others. There has always been an asymmetry between the benefits of computerized databases and the rights of individual data subjects. Some data protection principles can be derived from the legal framework. In this survey, we present some basic cryptographic and non-cryptographic techniques that may be used for enhancing privacy, we focus mainly on anonymization in databases and networks, discuss some differences and interactions among the well-known models of k-anonymity and differential privacy and finally present some challenges to privacy that come from big data analytics.
    Àrees temàtiques: Mathematics, applied Computational theory and mathematics Computational mathematics Applied mathematics
    ISSN: 16618289
    Adreça de correu electrònic de l'autor: josep.domingo@urv.cat
    Identificador de l'autor: 0000-0001-7213-4962
    Pàgina final: 274
    Data d'alta del registre: 2023-02-18
    Volum de revista: 12
    Versió de l'article dipositat: info:eu-repo/semantics/submittedVersion
    Enllaç font original: https://link.springer.com/article/10.1007/s11786-018-0344-6
    Referència a l'article segons font original: Mathematics In Computer Science. 12 (3): 263-274
    Referència de l'ítem segons les normes APA: Salas J, Domingo-Ferrer J (2018). Some basics on privacy techniques, anonymization and their big data challenges. Mathematics In Computer Science, 12(3), 263-274. DOI: 10.1007/s11786-018-0344-6
    URL Document de llicència: https://repositori.urv.cat/ca/proteccio-de-dades/
    DOI de l'article: 10.1007/s11786-018-0344-6
    Entitat: Universitat Rovira i Virgili
    Any de publicació de la revista: 2018
    Pàgina inicial: 263
    Tipus de publicació: Journal Publications
  • Paraules clau:

    Applied Mathematics,Computational Mathematics,Computational Theory and Mathematics,Mathematics, Applied
    Privacy enhancing technologies
    Privacy by design statistical disclosure
    Differential privacy
    Control k-anonymity
    Big data privacy
    Mathematics, applied
    Computational theory and mathematics
    Computational mathematics
    Applied mathematics
  • Documents:

  • Cerca a google

    Search to google scholar