Articles producció científica> Enginyeria Informàtica i Matemàtiques

The Symmetric Key Equation for Reed-Solomon Codes and a New Perspective on the Berlekamp-Massey Algorithm

  • Dades identificatives

    Identificador: imarina:6012535
    Autors:
    Bras-Amoros, MariaO'Sullivan, Michael E.
    Resum:
    This paper presents a new way to view the key equation for decoding Reed-Solomon codes that unites the two algorithms used in solving it-the Berlekamp-Massey algorithm and the Euclidean algorithm. A new key equation for Reed-Solomon codes is derived for simultaneous errors and erasures decoding using the symmetry between polynomials and their reciprocals as well as the symmetries between dual and primal codes. The new key equation is simpler since it involves only degree bounds rather than modular computations. We show how to solve it using the Euclidean algorithm. We then show that by reorganizing the Euclidean algorithm applied to the new key equation we obtain the Berlekamp-Massey algorithm.
  • Altres:

    Autor segons l'article: Bras-Amoros, Maria; O'Sullivan, Michael E.;
    Departament: Enginyeria Informàtica i Matemàtiques
    e-ISSN: 2073-8994
    Autor/s de la URV: Bras Amoros, Maria
    Paraules clau: Sugiyama et al. algorithm Reed-solomon codes Key equation Euclidean algorithm Equivalence Berlekamp-massey algorithm
    Resum: This paper presents a new way to view the key equation for decoding Reed-Solomon codes that unites the two algorithms used in solving it-the Berlekamp-Massey algorithm and the Euclidean algorithm. A new key equation for Reed-Solomon codes is derived for simultaneous errors and erasures decoding using the symmetry between polynomials and their reciprocals as well as the symmetries between dual and primal codes. The new key equation is simpler since it involves only degree bounds rather than modular computations. We show how to solve it using the Euclidean algorithm. We then show that by reorganizing the Euclidean algorithm applied to the new key equation we obtain the Berlekamp-Massey algorithm.
    Àrees temàtiques: Visual arts and performing arts Physics and astronomy (miscellaneous) Multidisciplinary sciences Modeling and simulation Mathematics, interdisciplinary applications Mathematics (miscellaneous) Mathematics (all) Matemática / probabilidade e estatística General mathematics Engineering (miscellaneous) Computer science (miscellaneous) Ciência da computação Chemistry (miscellaneous) Arts and humanities (miscellaneous) Architecture Applied mathematics
    Accès a la llicència d'ús: https://creativecommons.org/licenses/by/3.0/es/
    ISSN: 20738994
    Adreça de correu electrònic de l'autor: maria.bras@urv.cat
    Identificador de l'autor: 0000-0002-3481-004X
    Data d'alta del registre: 2023-07-31
    Volum de revista: 11
    Versió de l'article dipositat: info:eu-repo/semantics/publishedVersion
    Referència a l'article segons font original: Symmetry-Basel. 11 (11):
    Referència de l'ítem segons les normes APA: Bras-Amoros, Maria; O'Sullivan, Michael E.; (2019). The Symmetric Key Equation for Reed-Solomon Codes and a New Perspective on the Berlekamp-Massey Algorithm. Symmetry-Basel, 11(11), -. DOI: 10.3390/sym11111357
    URL Document de llicència: https://repositori.urv.cat/ca/proteccio-de-dades/
    Entitat: Universitat Rovira i Virgili
    Any de publicació de la revista: 2019
    Tipus de publicació: Journal Publications
  • Paraules clau:

    Applied Mathematics,Architecture,Arts and Humanities (Miscellaneous),Chemistry (Miscellaneous),Computer Science (Miscellaneous),Engineering (Miscellaneous),Mathematics (Miscellaneous),Mathematics, Interdisciplinary Applications,Modeling and Simulation,Multidisciplinary Sciences,Physics and Astronomy (Miscellaneous),Visual Arts and Performi
    Sugiyama et al. algorithm
    Reed-solomon codes
    Key equation
    Euclidean algorithm
    Equivalence
    Berlekamp-massey algorithm
    Visual arts and performing arts
    Physics and astronomy (miscellaneous)
    Multidisciplinary sciences
    Modeling and simulation
    Mathematics, interdisciplinary applications
    Mathematics (miscellaneous)
    Mathematics (all)
    Matemática / probabilidade e estatística
    General mathematics
    Engineering (miscellaneous)
    Computer science (miscellaneous)
    Ciência da computação
    Chemistry (miscellaneous)
    Arts and humanities (miscellaneous)
    Architecture
    Applied mathematics
  • Documents:

  • Cerca a google

    Search to google scholar