Articles producció científica> Enginyeria Química

Multi-box mass balance model of PFOA and PFOS in different regions of San Francisco Bay

  • Dades identificatives

    Identificador: imarina:6232123
    Autors:
    Sánchez-Soberón FSutton RSedlak MYee DSchuhmacher MPark JS
    Resum:
    © 2020 Elsevier Ltd We present a model to predict the long-term distribution and concentrations of perfluorooctanoic acid (PFOA) and perfluorooctanesulfonic acid (PFOS) in estuaries comprising multiple intercommunicated sub-embayments. To that end, a mass balance model including rate constants and time-varying water inputs was designed to calculate levels of these compounds in water and sediment for every sub-embayment. Subsequently, outflows and tidal water exchanges were used to interconnect the different regions of the estuary. To calculate plausible risks to population, outputs of the model were used as inputs in a previously designed model to simulate concentrations of PFOA and PFOS in a sport fish species (Cymatogaster aggregata). The performance of the model was evaluated by applying it to the specific case of San Francisco Bay, (California, USA), using 2009 sediment and water sampled concentrations of PFOA and PFOS in North, Central and South regions. Concentrations of these compounds in the Bay displayed exponential decreasing trends, but with different shapes depending on region, compound, and compartment assessed. Nearly stable PFOA concentrations were reached after 50 years, while PFOS needed close to 500 years to stabilize in sediment and fish. Afterwards, concentrations stabilize between 4 and 23 pg/g in sediment, between 0.02 and 44 pg/L in water, and between 7 and 104 pg/g wet weight in fish, depending on compound and region. South Bay had the greatest final concentrations of pollutants, regardless of compartment. Fish consumption is safe for most scenarios, but due to model uncertainty, limitations in monthly intake could be established for North and South Bay catches.
  • Altres:

    Autor segons l'article: Sánchez-Soberón F; Sutton R; Sedlak M; Yee D; Schuhmacher M; Park JS
    Departament: Enginyeria Química
    Autor/s de la URV: SÁNCHEZ SOBERÓN, FRANCISCO / Schuhmacher Ansuategui, Marta
    Paraules clau: Water Tokyo bay Temporal trends Sediment San francisco bay Polychlorinated-biphenyls Pfos Pfoa Perfluorooctane sulfonate pfos Perfluorochemicals Perfluoroalkyl substances Mass balance Long-term fate Fish Bioaccumulation Acids san francisco bay pfos pfoa mass balance fish
    Resum: © 2020 Elsevier Ltd We present a model to predict the long-term distribution and concentrations of perfluorooctanoic acid (PFOA) and perfluorooctanesulfonic acid (PFOS) in estuaries comprising multiple intercommunicated sub-embayments. To that end, a mass balance model including rate constants and time-varying water inputs was designed to calculate levels of these compounds in water and sediment for every sub-embayment. Subsequently, outflows and tidal water exchanges were used to interconnect the different regions of the estuary. To calculate plausible risks to population, outputs of the model were used as inputs in a previously designed model to simulate concentrations of PFOA and PFOS in a sport fish species (Cymatogaster aggregata). The performance of the model was evaluated by applying it to the specific case of San Francisco Bay, (California, USA), using 2009 sediment and water sampled concentrations of PFOA and PFOS in North, Central and South regions. Concentrations of these compounds in the Bay displayed exponential decreasing trends, but with different shapes depending on region, compound, and compartment assessed. Nearly stable PFOA concentrations were reached after 50 years, while PFOS needed close to 500 years to stabilize in sediment and fish. Afterwards, concentrations stabilize between 4 and 23 pg/g in sediment, between 0.02 and 44 pg/L in water, and between 7 and 104 pg/g wet weight in fish, depending on compound and region. South Bay had the greatest final concentrations of pollutants, regardless of compartment. Fish consumption is safe for most scenarios, but due to model uncertainty, limitations in monthly intake could be established for North and South Bay catches.
    Àrees temàtiques: Zootecnia / recursos pesqueiros Saúde coletiva Química Public health, environmental and occupational health Pollution Odontología Nutrição Medicine (miscellaneous) Medicina veterinaria Medicina ii Medicina i Materiais Interdisciplinar Health, toxicology and mutagenesis Geociências General chemistry Farmacia Environmental sciences Environmental engineering Environmental chemistry Ensino Engenharias iii Engenharias ii Engenharias i Educação física Ciências biológicas iii Ciências biológicas ii Ciências biológicas i Ciências ambientais Ciências agrárias i Ciência de alimentos Chemistry (miscellaneous) Chemistry (all) Biotecnología Biodiversidade Astronomia / física
    Accès a la llicència d'ús: https://creativecommons.org/licenses/by/3.0/es/
    ISSN: 0045-6535
    Adreça de correu electrònic de l'autor: marta.schuhmacher@urv.cat
    Identificador de l'autor: 0000-0003-4381-2490
    Data d'alta del registre: 2023-02-19
    Volum de revista: 252
    Versió de l'article dipositat: info:eu-repo/semantics/acceptedVersion
    Referència a l'article segons font original: Chemosphere. 252 126454-
    Referència de l'ítem segons les normes APA: Sánchez-Soberón F; Sutton R; Sedlak M; Yee D; Schuhmacher M; Park JS (2020). Multi-box mass balance model of PFOA and PFOS in different regions of San Francisco Bay. Chemosphere, 252(), 126454-. DOI: 10.1016/j.chemosphere.2020.126454
    URL Document de llicència: https://repositori.urv.cat/ca/proteccio-de-dades/
    Entitat: Universitat Rovira i Virgili
    Any de publicació de la revista: 2020
    Tipus de publicació: Journal Publications
  • Paraules clau:

    Chemistry (Miscellaneous),Environmental Chemistry,Environmental Engineering,Environmental Sciences,Health, Toxicology and Mutagenesis,Medicine (Miscellaneous),Pollution,Public Health, Environmental and Occupational Health
    Water
    Tokyo bay
    Temporal trends
    Sediment
    San francisco bay
    Polychlorinated-biphenyls
    Pfos
    Pfoa
    Perfluorooctane sulfonate pfos
    Perfluorochemicals
    Perfluoroalkyl substances
    Mass balance
    Long-term fate
    Fish
    Bioaccumulation
    Acids
    san francisco bay
    pfos
    pfoa
    mass balance
    fish
    Zootecnia / recursos pesqueiros
    Saúde coletiva
    Química
    Public health, environmental and occupational health
    Pollution
    Odontología
    Nutrição
    Medicine (miscellaneous)
    Medicina veterinaria
    Medicina ii
    Medicina i
    Materiais
    Interdisciplinar
    Health, toxicology and mutagenesis
    Geociências
    General chemistry
    Farmacia
    Environmental sciences
    Environmental engineering
    Environmental chemistry
    Ensino
    Engenharias iii
    Engenharias ii
    Engenharias i
    Educação física
    Ciências biológicas iii
    Ciências biológicas ii
    Ciências biológicas i
    Ciências ambientais
    Ciências agrárias i
    Ciência de alimentos
    Chemistry (miscellaneous)
    Chemistry (all)
    Biotecnología
    Biodiversidade
    Astronomia / física
  • Documents:

  • Cerca a google

    Search to google scholar