Articles producció científica> Química Física i Inorgànica

Reduced Common Molecular Orbital Basis for Nonorthogonal Configuration Interaction

  • Dades identificatives

    Identificador: imarina:6389888
    Autors:
    Kathir RKDe Graaf CBroer RHavenith RWA
    Resum:
    © 2020 American Chemical Society. Electron and charge transfers are part of many vital processes in nature and technology. Ab initio descriptions of these processes provide useful insights that can be utilized for applications. A combination of the embedded cluster material model and nonorthogonal configuration interaction (NOCI), in which the cluster wave functions are expanded in many-electron basis functions (MEBFs) consisting of spin-adapted, antisymmetrized products of multiconfigurational wave functions of fragments (which are usually molecules) in the cluster, appears to provide a compromise between accuracy and calculation time. Additional advantages of this NOCI-Fragments approach are the chemically convenient interpretation of the wave function in terms of molecular states, and the direct accessibility of electronic coupling between diabatic states to describe energy and electron transfer processes. Bottlenecks in this method are the large number of two-electron integrals that have to be handled for the calculation of an electronic coupling matrix element and the enormous number of matrix elements over determinant pairs that have to be evaluated for the calculation of one matrix element between the MEBFs. We show here how we created a reduced common molecular orbital basis that is utilized to significantly reduce the number of two-electron integrals that need to be handled. The results obtained with this basis do not show any loss of accuracy in relevant quantities like electronic couplings and vertical excitation energies. We also show a significant reduction in computation time without loss in accuracy when matrix elements over determinant pairs with small weights are neglected in the NOCI. These improvements in the methodology render NOCI-Fragments to be al
  • Altres:

    Autor segons l'article: Kathir RK; De Graaf C; Broer R; Havenith RWA
    Departament: Química Física i Inorgànica
    Autor/s de la URV: De Graaf, Cornelis
    Paraules clau: Valence-bond theory Transport Singlet fission Pentacene Matrix-elements Hole states Hartree-fock theory Exciton Electronic-structure Charge-transfer
    Resum: © 2020 American Chemical Society. Electron and charge transfers are part of many vital processes in nature and technology. Ab initio descriptions of these processes provide useful insights that can be utilized for applications. A combination of the embedded cluster material model and nonorthogonal configuration interaction (NOCI), in which the cluster wave functions are expanded in many-electron basis functions (MEBFs) consisting of spin-adapted, antisymmetrized products of multiconfigurational wave functions of fragments (which are usually molecules) in the cluster, appears to provide a compromise between accuracy and calculation time. Additional advantages of this NOCI-Fragments approach are the chemically convenient interpretation of the wave function in terms of molecular states, and the direct accessibility of electronic coupling between diabatic states to describe energy and electron transfer processes. Bottlenecks in this method are the large number of two-electron integrals that have to be handled for the calculation of an electronic coupling matrix element and the enormous number of matrix elements over determinant pairs that have to be evaluated for the calculation of one matrix element between the MEBFs. We show here how we created a reduced common molecular orbital basis that is utilized to significantly reduce the number of two-electron integrals that need to be handled. The results obtained with this basis do not show any loss of accuracy in relevant quantities like electronic couplings and vertical excitation energies. We also show a significant reduction in computation time without loss in accuracy when matrix elements over determinant pairs with small weights are neglected in the NOCI. These improvements in the methodology render NOCI-Fragments to be also applicable to treat clusters of larger molecular systems with larger atomic basis sets and larger active spaces, as the computation time becomes dependent on the number of occupied orbitals and less dependent on the size of the active space.
    Àrees temàtiques: Química Physics, atomic, molecular & chemical Physical and theoretical chemistry Medicina i Materiais Matemática / probabilidade e estatística Interdisciplinar Farmacia Engenharias iii Computer science applications Ciências biológicas ii Ciências biológicas i Ciência da computação Chemistry, physical Chemistry, multidisciplinary Biotecnología Astronomia / física
    Accès a la llicència d'ús: https://creativecommons.org/licenses/by/3.0/es/
    ISSN: 15499618
    Adreça de correu electrònic de l'autor: coen.degraaf@urv.cat
    Identificador de l'autor: 0000-0001-8114-6658
    Data d'alta del registre: 2023-02-26
    Versió de l'article dipositat: info:eu-repo/semantics/publishedVersion
    Enllaç font original: https://pubs.acs.org/doi/10.1021/acs.jctc.9b01144
    Referència a l'article segons font original: Journal Of Chemical Theory And Computation. 16 (5): 2941-2951
    Referència de l'ítem segons les normes APA: Kathir RK; De Graaf C; Broer R; Havenith RWA (2020). Reduced Common Molecular Orbital Basis for Nonorthogonal Configuration Interaction. Journal Of Chemical Theory And Computation, 16(5), 2941-2951. DOI: 10.1021/acs.jctc.9b01144
    URL Document de llicència: https://repositori.urv.cat/ca/proteccio-de-dades/
    DOI de l'article: 10.1021/acs.jctc.9b01144
    Entitat: Universitat Rovira i Virgili
    Any de publicació de la revista: 2020
    Tipus de publicació: Journal Publications
  • Paraules clau:

    Chemistry, Multidisciplinary,Chemistry, Physical,Computer Science Applications,Physical and Theoretical Chemistry,Physics, Atomic, Molecular & Chemical
    Valence-bond theory
    Transport
    Singlet fission
    Pentacene
    Matrix-elements
    Hole states
    Hartree-fock theory
    Exciton
    Electronic-structure
    Charge-transfer
    Química
    Physics, atomic, molecular & chemical
    Physical and theoretical chemistry
    Medicina i
    Materiais
    Matemática / probabilidade e estatística
    Interdisciplinar
    Farmacia
    Engenharias iii
    Computer science applications
    Ciências biológicas ii
    Ciências biológicas i
    Ciência da computação
    Chemistry, physical
    Chemistry, multidisciplinary
    Biotecnología
    Astronomia / física
  • Documents:

  • Cerca a google

    Search to google scholar