Autor segons l'article: Reyes G; Lanzarini L; Hasperué W; Bariviera AF
Departament: Gestió d'Empreses
Autor/s de la URV: Fernández Bariviera, Aurelio
Paraules clau: Segmentation Perspective Intelligent transportation systems Gps trajectories Distance Clustering
Resum: © 2020 - IOS Press and the authors. All rights reserved. Technological progress facilitates recording and collecting information on vehicles' GPS trajectories on public roads. The intelligent analysis of this data leads to the identification of extremely useful patterns when making decisions in situations related to urbanism, traffic and road congestion, among others. This article presents a GPS trajectory clustering method that uses angular information to segment the trajectories and a similarity function guided by a pivot. In order to initialize the process, it is proposed to segment the region to be analyzed in a uniform way forming a grid. The obtained results after applying the proposed method on a real trajectories database are satisfactory and show significant improvement in comparison with the methods published in the bibliography.
Àrees temàtiques: Statistics and probability Interdisciplinar General engineering Ensino Engineering (miscellaneous) Engineering (all) Engenharias iv Engenharias iii Economia Computer science, artificial intelligence Ciências ambientais Ciência da computação Biotecnología Artificial intelligence Administração pública e de empresas, ciências contábeis e turismo
Accès a la llicència d'ús: https://creativecommons.org/licenses/by/3.0/es/
ISSN: 10641246
Adreça de correu electrònic de l'autor: aurelio.fernandez@urv.cat
Identificador de l'autor: 0000-0003-1014-1010
Data d'alta del registre: 2024-04-27
Versió de l'article dipositat: info:eu-repo/semantics/acceptedVersion
Referència a l'article segons font original: Journal Of Intelligent & Fuzzy Systems. 38 (5): 5529-5535
Referència de l'ítem segons les normes APA: Reyes G; Lanzarini L; Hasperué W; Bariviera AF (2020). GPS trajectory clustering method for decision making on intelligent transportation systems. Journal Of Intelligent & Fuzzy Systems, 38(5), 5529-5535. DOI: 10.3233/JIFS-179644
URL Document de llicència: https://repositori.urv.cat/ca/proteccio-de-dades/
Entitat: Universitat Rovira i Virgili
Any de publicació de la revista: 2020
Tipus de publicació: Journal Publications