Articles producció científica> Enginyeria Informàtica i Matemàtiques

MONET: a toolbox integrating top-performing methods for network modularization

  • Dades identificatives

    Identificador: imarina:6685009
    Autors:
    Tomasoni, MattiaGomez, SergioCrawford, JakeZhang, WeijiaChoobdar, SarvenazMarbach, DanielBergmann, Sven
    Resum:
    © The Author(s) 2020. Published by Oxford University Press. SUMMARY: We define a disease module as a partition of a molecular network whose components are jointly associated with one or several diseases or risk factors thereof. Identification of such modules, across different types of networks, has great potential for elucidating disease mechanisms and establishing new powerful biomarkers. To this end, we launched the 'Disease Module Identification (DMI) DREAM Challenge', a community effort to build and evaluate unsupervised molecular network modularization algorithms. Here, we present MONET, a toolbox providing easy and unified access to the three top-performing methods from the DMI DREAM Challenge for the bioinformatics community. AVAILABILITY AND IMPLEMENTATION: MONET is a command line tool for Linux, based on Docker and Singularity containers; the core algorithms were written in R, Python, Ada and C++. It is freely available for download at https://github.com/BergmannLab/MONET.git. SUPPLEMENTARY INFORMATION: Supplementary data are available at Bioinformatics online.
  • Altres:

    Autor segons l'article: Tomasoni, Mattia; Gomez, Sergio; Crawford, Jake; Zhang, Weijia; Choobdar, Sarvenaz; Marbach, Daniel; Bergmann, Sven
    Departament: Enginyeria Informàtica i Matemàtiques
    Autor/s de la URV: Gómez Jiménez, Sergio
    Paraules clau: Software Community structure Algorithms
    Resum: © The Author(s) 2020. Published by Oxford University Press. SUMMARY: We define a disease module as a partition of a molecular network whose components are jointly associated with one or several diseases or risk factors thereof. Identification of such modules, across different types of networks, has great potential for elucidating disease mechanisms and establishing new powerful biomarkers. To this end, we launched the 'Disease Module Identification (DMI) DREAM Challenge', a community effort to build and evaluate unsupervised molecular network modularization algorithms. Here, we present MONET, a toolbox providing easy and unified access to the three top-performing methods from the DMI DREAM Challenge for the bioinformatics community. AVAILABILITY AND IMPLEMENTATION: MONET is a command line tool for Linux, based on Docker and Singularity containers; the core algorithms were written in R, Python, Ada and C++. It is freely available for download at https://github.com/BergmannLab/MONET.git. SUPPLEMENTARY INFORMATION: Supplementary data are available at Bioinformatics online.
    Àrees temàtiques: Statistics and probability Statistics & probability Odontología Nutrição Molecular biology Medicina veterinaria Medicina ii Medicina i Mathematics, interdisciplinary applications Mathematical & computational biology Matemática / probabilidade e estatística Interdisciplinar General medicine Engenharias iv Economia Computer science, interdisciplinary applications Computer science applications Computational theory and mathematics Computational mathematics Ciências biológicas iii Ciências biológicas ii Ciências biológicas i Ciências agrárias i Ciência da computação Biotecnología Biotechnology & applied microbiology Biology, miscellaneous Biodiversidade Biochemistry Biochemical research methods Astronomia / física
    Accès a la llicència d'ús: https://creativecommons.org/licenses/by/3.0/es/
    ISSN: 1367-4803
    Adreça de correu electrònic de l'autor: sergio.gomez@urv.cat
    Identificador de l'autor: 0000-0003-1820-0062
    Pàgina final: 3921
    Data d'alta del registre: 2024-10-26
    Volum de revista: 36
    Versió de l'article dipositat: info:eu-repo/semantics/publishedVersion
    Enllaç font original: https://academic.oup.com/bioinformatics/article/36/12/3920/5818484
    URL Document de llicència: https://repositori.urv.cat/ca/proteccio-de-dades/
    Referència a l'article segons font original: Bioinformatics. 36 (12): 3920-3921
    Referència de l'ítem segons les normes APA: Tomasoni, Mattia; Gomez, Sergio; Crawford, Jake; Zhang, Weijia; Choobdar, Sarvenaz; Marbach, Daniel; Bergmann, Sven (2020). MONET: a toolbox integrating top-performing methods for network modularization. Bioinformatics, 36(12), 3920-3921. DOI: 10.1093/bioinformatics/btaa236
    DOI de l'article: 10.1093/bioinformatics/btaa236
    Entitat: Universitat Rovira i Virgili
    Any de publicació de la revista: 2020
    Pàgina inicial: 3920
    Tipus de publicació: Journal Publications
  • Paraules clau:

    Biochemical Research Methods,Biochemistry,Biology, Miscellaneous,Biotechnology & Applied Microbiology,Computational Mathematics,Computational Theory and Mathematics,Computer Science Applications,Computer Science, Interdisciplinary Applications,Mathematical & Computational Biology,Mathematics, Interdisciplinary Applications,Molecular Biolog
    Software
    Community structure
    Algorithms
    Statistics and probability
    Statistics & probability
    Odontología
    Nutrição
    Molecular biology
    Medicina veterinaria
    Medicina ii
    Medicina i
    Mathematics, interdisciplinary applications
    Mathematical & computational biology
    Matemática / probabilidade e estatística
    Interdisciplinar
    General medicine
    Engenharias iv
    Economia
    Computer science, interdisciplinary applications
    Computer science applications
    Computational theory and mathematics
    Computational mathematics
    Ciências biológicas iii
    Ciências biológicas ii
    Ciências biológicas i
    Ciências agrárias i
    Ciência da computação
    Biotecnología
    Biotechnology & applied microbiology
    Biology, miscellaneous
    Biodiversidade
    Biochemistry
    Biochemical research methods
    Astronomia / física
  • Documents:

  • Cerca a google

    Search to google scholar