Articles producció científica> Enginyeria Informàtica i Matemàtiques

Dominating the direct product of two graphs through total Roman strategies

  • Dades identificatives

    Identificador: imarina:8505358
    Autors:
    Cabrera AKuziak DPeterin IYero IG
    Resum:
    © 2020 by the authors. Given a graph G without isolated vertices, a total Roman dominating function for G is a function f: V(G) → [0, 1, 2] such that every vertex u with f (u) = 0 is adjacent to a vertex v with f (v) = 2, and the set of vertices with positive labels induces a graph of minimum degree at least one. The total Roman domination number γtR(G) of G is the smallest possible value of ΣvεV(G) f (v) among all total Roman dominating functions f . The total Roman domination number of the direct product G× H of the graphs G and H is studied in this work. Specifically, several relationships, in the shape of upper and lower bounds, between γtR(G× H) and some classical domination parameters for the factors are given. Characterizations of the direct product graphs G× H achieving small values (≤ 7) for γtR(G× H) are presented, and exact values for γtR(G× H) are deduced, while considering various specific direct product classes.
  • Altres:

    Autor segons l'article: Cabrera A; Kuziak D; Peterin I; Yero IG
    Departament: Enginyeria Informàtica i Matemàtiques
    Autor/s de la URV: CABRERA MARTÍNEZ, ABEL
    Paraules clau: Total roman domination Roman domination Number Direct product graphs msc: 05c69 Direct product graphs 05c76
    Resum: © 2020 by the authors. Given a graph G without isolated vertices, a total Roman dominating function for G is a function f: V(G) → [0, 1, 2] such that every vertex u with f (u) = 0 is adjacent to a vertex v with f (v) = 2, and the set of vertices with positive labels induces a graph of minimum degree at least one. The total Roman domination number γtR(G) of G is the smallest possible value of ΣvεV(G) f (v) among all total Roman dominating functions f . The total Roman domination number of the direct product G× H of the graphs G and H is studied in this work. Specifically, several relationships, in the shape of upper and lower bounds, between γtR(G× H) and some classical domination parameters for the factors are given. Characterizations of the direct product graphs G× H achieving small values (≤ 7) for γtR(G× H) are presented, and exact values for γtR(G× H) are deduced, while considering various specific direct product classes.
    Àrees temàtiques: Química Mathematics (miscellaneous) Mathematics General mathematics Astronomia / física
    Accès a la llicència d'ús: https://creativecommons.org/licenses/by/3.0/es/
    Adreça de correu electrònic de l'autor: abel.cabrera@urv.cat
    Identificador de l'autor: 0000-0003-2806-4842
    Data d'alta del registre: 2021-10-10
    Versió de l'article dipositat: info:eu-repo/semantics/publishedVersion
    Enllaç font original: https://www.mdpi.com/2227-7390/8/9/1438
    Referència a l'article segons font original: Mathematics. 8 (9):
    Referència de l'ítem segons les normes APA: Cabrera A; Kuziak D; Peterin I; Yero IG (2020). Dominating the direct product of two graphs through total Roman strategies. Mathematics, 8(9), -. DOI: 10.3390/MATH8091438
    URL Document de llicència: https://repositori.urv.cat/ca/proteccio-de-dades/
    DOI de l'article: 10.3390/MATH8091438
    Entitat: Universitat Rovira i Virgili
    Any de publicació de la revista: 2020
    Tipus de publicació: Journal Publications
  • Paraules clau:

    Mathematics,Mathematics (Miscellaneous)
    Total roman domination
    Roman domination
    Number
    Direct product graphs msc: 05c69
    Direct product graphs
    05c76
    Química
    Mathematics (miscellaneous)
    Mathematics
    General mathematics
    Astronomia / física
  • Documents:

  • Cerca a google

    Search to google scholar