Autor segons l'article: Bamiloshin, Michael; Ben-Efraim, Aner; Farras, Oriol; Padro, Carles;
Departament: Enginyeria Informàtica i Matemàtiques
Autor/s de la URV: Bamiloshin, Michael Olugbenga / Farràs Ventura, Oriol
Codi de projecte: Grant agreement No. 713679
Paraules clau: Secret sharing Schemes Networks Matroid representation Linear programming Information inequalities Inequalities Common information Bounds
Resum: Linear information and rank inequalities as, for instance, Ingleton inequality, are useful tools in information theory and matroid theory. Even though many such inequalities have been found, it seems that most of them remain undiscovered. Improved results have been obtained in recent works by using the properties from which they are derived instead of the inequalities themselves. We apply here this strategy to the classification of matroids according to their representations and to the search for bounds on secret sharing for matroid ports.
Àrees temàtiques: Theoretical computer science Mathematics, applied Matemática / probabilidade e estatística Engenharias iv Engenharias iii Discrete mathematics and combinatorics Computer science, theory & methods Computer science applications Ciência da computação Astronomia / física Applied mathematics
Accès a la llicència d'ús: https://creativecommons.org/licenses/by/3.0/es/
Adreça de correu electrònic de l'autor: michaelolugbenga.bamiloshin@urv.cat oriol.farras@urv.cat
Identificador de l'autor: 0000-0002-4076-3833 0000-0002-7495-5980
Data d'alta del registre: 2024-07-27
Versió de l'article dipositat: info:eu-repo/semantics/acceptedVersion
Enllaç font original: https://link.springer.com/article/10.1007/s10623-020-00811-1
Programa de finançament: Martí i Franquès COFUND Doctoral Programme
URL Document de llicència: https://repositori.urv.cat/ca/proteccio-de-dades/
Referència a l'article segons font original: Designs Codes And Cryptography. 89 (1): 143-166
Referència de l'ítem segons les normes APA: Bamiloshin, Michael; Ben-Efraim, Aner; Farras, Oriol; Padro, Carles; (2021). Common information, matroid representation, and secret sharing for matroid ports. Designs Codes And Cryptography, 89(1), 143-166. DOI: 10.1007/s10623-020-00811-1
Acrònim: MFP
DOI de l'article: 10.1007/s10623-020-00811-1
Entitat: Universitat Rovira i Virgili
Any de publicació de la revista: 2021
Acció del programa de finançament: Marie Skłodowska-Curie Actions - European Union's Horizon 2020 research and innovation programme
Tipus de publicació: Journal Publications