Articles producció científica> Química Física i Inorgànica

Recent advances in the use of catalysts based on natural products for the conversion of CO2 into cyclic carbonates

  • Dades identificatives

    Identificador: imarina:9085859
    Autors:
    Claver, CarmenYeamin, Md BinReguero, MarMasdeu-Bulto, Anna M
    Resum:
    The cycloaddition of carbon dioxide to epoxides is an efficient and clean method to obtain cyclic carbonates, which are used as green solvents, as electrolytes for lithium batteries and as intermediates for the synthesis of polymers and chemicals. This reaction requires a catalyst to overcome the low reactivity of carbon dioxide. The best catalysts for this transformation include a Lewis acid or hydrogen-bond donor to activate the epoxide and a Lewis base as a nucleophile to open the ring of the oxirane cycle. The most commonly used catalysts are alkali halides, ammonium and phosphonium salts, which are organocatalysts containing hydrogen-bond donor groups and metal-based systems. To increase the sustainability and decrease the toxicity of the catalytic systems, many bio-based products derived from natural sources have been used as catalysts or in combination with catalytic materials. The high functionality of natural products that contain amino and/or hydroxyl groups is used to activate an epoxide or reversibly capture carbon dioxide when used directly. But these products can also behave as auxiliaries, for instance, as ligands in metal-based complexes, as biopolymer active supports for catalysts, as components for the skeleton of metal organic frameworks or to form ionic liquids or as deep eutectic solvents serving as an active medium for catalytic reactions. In this literature review, we present a structured overview of the reported chemical catalytic systems containing any component derived from a natural product. We discuss the amino acid-based systems, cellulose, saccharides, lignin and lignocellulosic materials, choline-derived species, guanidine and guanidinium salts, and other less explored compounds. Special emphasis has been placed on mechanistic studies prov
  • Altres:

    e-ISSN: 1463-9270
    Codi de projecte: CTQ2016-75016-R
    Paraules clau: Propylene carbonate Of-the-art Metal-organic frameworks Ionic liquids Highly efficient Heterogeneous catalyst Efficient synthesis Dioxide capture Deep eutectic solvents Chemical fixation
    Data d'alta del registre: 2024-10-12
    Versió de l'article dipositat: info:eu-repo/semantics/submittedVersion
    URL Document de llicència: https://repositori.urv.cat/ca/proteccio-de-dades/
    Referència a l'article segons font original: Green Chemistry. 22 (22): 7665-7706
    Referència de l'ítem segons les normes APA: Claver, Carmen; Yeamin, Md Bin; Reguero, Mar; Masdeu-Bulto, Anna M (2020). Recent advances in the use of catalysts based on natural products for the conversion of CO2 into cyclic carbonates. Green Chemistry, 22(22), 7665-7706. DOI: 10.1039/d0gc01870h
    Acrònim: ECO2VALCAT
    Tipus de publicació: Journal Publications
    Autor segons l'article: Claver, Carmen; Yeamin, Md Bin; Reguero, Mar; Masdeu-Bulto, Anna M
    Departament: Química Física i Inorgànica
    Autor/s de la URV: Claver Cabrero, Maria del Carmen Orosia / Masdeu Bultó, Anna Maria / Reguero de la Poza, Maria del Mar / Yeamin, MD Bin
    Resum: The cycloaddition of carbon dioxide to epoxides is an efficient and clean method to obtain cyclic carbonates, which are used as green solvents, as electrolytes for lithium batteries and as intermediates for the synthesis of polymers and chemicals. This reaction requires a catalyst to overcome the low reactivity of carbon dioxide. The best catalysts for this transformation include a Lewis acid or hydrogen-bond donor to activate the epoxide and a Lewis base as a nucleophile to open the ring of the oxirane cycle. The most commonly used catalysts are alkali halides, ammonium and phosphonium salts, which are organocatalysts containing hydrogen-bond donor groups and metal-based systems. To increase the sustainability and decrease the toxicity of the catalytic systems, many bio-based products derived from natural sources have been used as catalysts or in combination with catalytic materials. The high functionality of natural products that contain amino and/or hydroxyl groups is used to activate an epoxide or reversibly capture carbon dioxide when used directly. But these products can also behave as auxiliaries, for instance, as ligands in metal-based complexes, as biopolymer active supports for catalysts, as components for the skeleton of metal organic frameworks or to form ionic liquids or as deep eutectic solvents serving as an active medium for catalytic reactions. In this literature review, we present a structured overview of the reported chemical catalytic systems containing any component derived from a natural product. We discuss the amino acid-based systems, cellulose, saccharides, lignin and lignocellulosic materials, choline-derived species, guanidine and guanidinium salts, and other less explored compounds. Special emphasis has been placed on mechanistic studies providing information about the role of each component in these multifunctional systems.
    Àrees temàtiques: Química Pollution Medicina veterinaria Medicina ii Materiais Interdisciplinar Green & sustainable science & technology Farmacia Environmental chemistry Engenharias iv Engenharias iii Engenharias ii Ciências biológicas ii Ciências biológicas i Ciências agrárias i Ciência de alimentos Chemistry, multidisciplinary Chemistry Biotecnología Astronomia / física
    Accès a la llicència d'ús: https://creativecommons.org/licenses/by/3.0/es/
    ISSN: 1463-9262
    Adreça de correu electrònic de l'autor: annamaria.masdeu@urv.cat carmen.claver@urv.cat mar.reguero@urv.cat
    Identificador de l'autor: 0000-0001-7938-3902 0000-0002-2518-7401 0000-0001-9668-8265
    Enllaç font original: https://pubs.rsc.org/en/content/articlelanding/2020/gc/d0gc01870h#!divAbstract
    Programa de finançament: PROGRAMA ESTATAL DE INVESTIGACIÓN, DESARROLLO E INNOVACIÓN ORIENTADA A LOS RETOS DE LA SOCIEDAD
    DOI de l'article: 10.1039/d0gc01870h
    Entitat: Universitat Rovira i Virgili
    Any de publicació de la revista: 2020
    Acció del programa de finançament: VALORIZACION EFICIENTE DE CO2 A COMBUSTIBLES Y COMPUESTOS DE ALTO VALOR AÑADIDO MEDIANTE CATALISIS HOMOGENEA Y NANO-CATALISIS
  • Paraules clau:

    Chemistry,Chemistry, Multidisciplinary,Environmental Chemistry,Green & Sustainable Science & Technology,Pollution
    Propylene carbonate
    Of-the-art
    Metal-organic frameworks
    Ionic liquids
    Highly efficient
    Heterogeneous catalyst
    Efficient synthesis
    Dioxide capture
    Deep eutectic solvents
    Chemical fixation
    Química
    Pollution
    Medicina veterinaria
    Medicina ii
    Materiais
    Interdisciplinar
    Green & sustainable science & technology
    Farmacia
    Environmental chemistry
    Engenharias iv
    Engenharias iii
    Engenharias ii
    Ciências biológicas ii
    Ciências biológicas i
    Ciências agrárias i
    Ciência de alimentos
    Chemistry, multidisciplinary
    Chemistry
    Biotecnología
    Astronomia / física
  • Documents:

  • Cerca a google

    Search to google scholar