Articles producció científica> Enginyeria Informàtica i Matemàtiques

INDEPENDENT TRANSVERSAL TOTAL DOMINATION VERSUS TOTAL DOMINATION IN TREES

  • Dades identificatives

    Identificador: imarina:9093097
    Autors:
    Cabrera Martinez, AbelPeterin, IztokYero, Ismael G.
    Resum:
    A subset of vertices in a graph G is a total dominating set if every vertex in G is adjacent to at least one vertex in this subset. The total domination number of G is the minimum cardinality of any total dominating set in G and is denoted by gamma(t)(G). A total dominating set of G having nonempty intersection with all the independent sets of maximum cardinality in G is an independent transversal total dominating set. The minimum cardinality of any independent transversal total dominating set is denoted by gamma(u) (G). Based on the fact that for any tree T, gamma(t) (T) <= gamma(u) (T) <= gamma(t) (T) + 1, in this work we give several relationship(s) between gamma(u) (T) and gamma(t) (T) for trees T which are leading to classify the trees which are satisfying the equality in these bounds.
  • Altres:

    Autor segons l'article: Cabrera Martinez, Abel; Peterin, Iztok; Yero, Ismael G.;
    Departament: Enginyeria Informàtica i Matemàtiques
    Autor/s de la URV: CABRERA MARTÍNEZ, ABEL / GONZÁLEZ YERO, ISMAEL
    Paraules clau: Trees Total domination number Independent transversal total domination number Independence number
    Resum: A subset of vertices in a graph G is a total dominating set if every vertex in G is adjacent to at least one vertex in this subset. The total domination number of G is the minimum cardinality of any total dominating set in G and is denoted by gamma(t)(G). A total dominating set of G having nonempty intersection with all the independent sets of maximum cardinality in G is an independent transversal total dominating set. The minimum cardinality of any independent transversal total dominating set is denoted by gamma(u) (G). Based on the fact that for any tree T, gamma(t) (T) <= gamma(u) (T) <= gamma(t) (T) + 1, in this work we give several relationship(s) between gamma(u) (T) and gamma(t) (T) for trees T which are leading to classify the trees which are satisfying the equality in these bounds.
    Àrees temàtiques: Mathematics Matemática / probabilidade e estatística Discrete mathematics and combinatorics Ciência da computação Applied mathematics
    Accès a la llicència d'ús: https://creativecommons.org/licenses/by/3.0/es/
    ISSN: 1234-3099
    Adreça de correu electrònic de l'autor: abel.cabrera@urv.cat
    Identificador de l'autor: 0000-0003-2806-4842
    Pàgina final: 224
    Data d'alta del registre: 2021-10-10
    Volum de revista: 41
    Versió de l'article dipositat: info:eu-repo/semantics/publishedVersion
    Referència a l'article segons font original: Discussiones Mathematicae Graph Theory. 41 (1): 213-224
    Referència de l'ítem segons les normes APA: Cabrera Martinez, Abel; Peterin, Iztok; Yero, Ismael G.; (2021). INDEPENDENT TRANSVERSAL TOTAL DOMINATION VERSUS TOTAL DOMINATION IN TREES. Discussiones Mathematicae Graph Theory, 41(1), 213-224. DOI: 10.7151/dmgt.2200
    URL Document de llicència: https://repositori.urv.cat/ca/proteccio-de-dades/
    Entitat: Universitat Rovira i Virgili
    Any de publicació de la revista: 2021
    Pàgina inicial: 213
    Tipus de publicació: Journal Publications
  • Paraules clau:

    Applied Mathematics,Discrete Mathematics and Combinatorics,Mathematics
    Trees
    Total domination number
    Independent transversal total domination number
    Independence number
    Mathematics
    Matemática / probabilidade e estatística
    Discrete mathematics and combinatorics
    Ciência da computação
    Applied mathematics
  • Documents:

  • Cerca a google

    Search to google scholar