Articles producció científica> Enginyeria Informàtica i Matemàtiques

A CONSTRUCTIVE CHARACTERIZATION OF VERTEX COVER ROMAN TREES

  • Dades identificatives

    Identificador: imarina:9093098
    Autors:
    Cabrera Martinez, AbelKuziak, DorotaYero, Ismael G.
    Resum:
    A Roman dominating function on a graph G = (V (G), E (G)) is a function f : V (G) -> {0, 1, 2} satisfying the condition that every vertex u for which f (u) = 0 is adjacent to at least one vertex v for which f (v) = 2. The Roman dominating function f is an outer-independent Roman dominating function on G if the set of vertices labeled with zero under f is an independent set. The outer-independent Roman domination number gamma(oiR) (G) is the minimum weight w(f ) = Sigma(v is an element of V), ((G)) f(v) of any outer-independent Roman dominating function f of G. A vertex cover of a graph G is a set of vertices that covers all the edges of G. The minimum cardinality of a vertex cover is denoted by alpha(G). A graph G is a vertex cover Roman graph if gamma(oiR) (G) = 2 alpha(G). A constructive characterization of the vertex cover Roman trees is given in this article.
  • Altres:

    Autor segons l'article: Cabrera Martinez, Abel; Kuziak, Dorota; Yero, Ismael G.;
    Departament: Enginyeria Informàtica i Matemàtiques
    Autor/s de la URV: CABRERA MARTÍNEZ, ABEL / GONZÁLEZ YERO, ISMAEL
    Paraules clau: Vertex independence Vertex cover Trees Roman domination Outer-independent roman domination Domination
    Resum: A Roman dominating function on a graph G = (V (G), E (G)) is a function f : V (G) -> {0, 1, 2} satisfying the condition that every vertex u for which f (u) = 0 is adjacent to at least one vertex v for which f (v) = 2. The Roman dominating function f is an outer-independent Roman dominating function on G if the set of vertices labeled with zero under f is an independent set. The outer-independent Roman domination number gamma(oiR) (G) is the minimum weight w(f ) = Sigma(v is an element of V), ((G)) f(v) of any outer-independent Roman dominating function f of G. A vertex cover of a graph G is a set of vertices that covers all the edges of G. The minimum cardinality of a vertex cover is denoted by alpha(G). A graph G is a vertex cover Roman graph if gamma(oiR) (G) = 2 alpha(G). A constructive characterization of the vertex cover Roman trees is given in this article.
    Àrees temàtiques: Mathematics Matemática / probabilidade e estatística Discrete mathematics and combinatorics Ciência da computação Applied mathematics
    Accès a la llicència d'ús: https://creativecommons.org/licenses/by/3.0/es/
    ISSN: 1234-3099
    Adreça de correu electrònic de l'autor: abel.cabrera@urv.cat
    Identificador de l'autor: 0000-0003-2806-4842
    Pàgina final: 283
    Data d'alta del registre: 2021-10-10
    Volum de revista: 41
    Versió de l'article dipositat: info:eu-repo/semantics/publishedVersion
    Enllaç font original: https://www.dmgt.uz.zgora.pl/publish/bbl_view_pdf.php?ID=42024
    Referència a l'article segons font original: Discussiones Mathematicae Graph Theory. 41 (1): 267-283
    Referència de l'ítem segons les normes APA: Cabrera Martinez, Abel; Kuziak, Dorota; Yero, Ismael G.; (2021). A CONSTRUCTIVE CHARACTERIZATION OF VERTEX COVER ROMAN TREES. Discussiones Mathematicae Graph Theory, 41(1), 267-283. DOI: 10.7151/dmgt.2179
    URL Document de llicència: https://repositori.urv.cat/ca/proteccio-de-dades/
    DOI de l'article: 10.7151/dmgt.2179
    Entitat: Universitat Rovira i Virgili
    Any de publicació de la revista: 2021
    Pàgina inicial: 267
    Tipus de publicació: Journal Publications
  • Paraules clau:

    Applied Mathematics,Discrete Mathematics and Combinatorics,Mathematics
    Vertex independence
    Vertex cover
    Trees
    Roman domination
    Outer-independent roman domination
    Domination
    Mathematics
    Matemática / probabilidade e estatística
    Discrete mathematics and combinatorics
    Ciência da computação
    Applied mathematics
  • Documents:

  • Cerca a google

    Search to google scholar