Articles producció científica> Ciències Mèdiques Bàsiques

Transcriptional response of fusarium oxysporum and neocosmospora solani challenged with amphotericin B or posaconazole

  • Dades identificatives

    Identificador: imarina:9138830
    Autors:
    Castillo-Castañeda ACañas-Duarte SJGuevara-Suarez MGuarro JRestrepo SCelis Ramírez AM
    Resum:
    © 2020 The Authors. Some species of fusaria are well-known pathogens of humans, animals and plants. Fusarium oxysporum and Neocosmospora solani (formerly Fusarium solani) cause human infections that range from onychomycosis or keratitis to severe disseminated infections. In general, these infections are difficult to treat due to poor therapeutic responses in immunocompromised patients. Despite that, little is known about the molecular mechanisms and transcriptional changes responsible for the antifungal resistance in fusaria. To shed light on the transcriptional response to antifungals, we carried out the first reported high-throughput RNA-seq analysis for F. oxysporum and N. solani that had been exposed to amphotericin B (AMB) and posaconazole (PSC). We detected significant differences between the transcriptional profiles of the two species and we found that some oxidation-reduction, metabolic, cellular and transport processes were regulated differentially by both fungi. The same was found with several genes from the ergosterol synthesis, efflux pumps, oxidative stress response and membrane biosynthesis pathways. A significant up-regulation of the C-22 sterol desaturase (ERG5), the sterol 24-C-methyltransferase (ERG6) gene, the glutathione S-transferase (GST) gene and of several members of the major facilitator superfamily (MSF) was demonstrated in this study after treating F. oxysporum with AMB. These results offer a good overview of transcriptional changes after exposure to com-monly used antifungals, highlights the genes that are related to resistance mechanisms of these fungi, which will be a valuable tool for identifying causes of failure of treatments.
  • Altres:

    Autor segons l'article: Castillo-Castañeda A; Cañas-Duarte SJ; Guevara-Suarez M; Guarro J; Restrepo S; Celis Ramírez AM
    Departament: Ciències Mèdiques Bàsiques
    Autor/s de la URV: Guarro Artigas, Josep
    Paraules clau: Transcriptional changes Rna-seq Posaconazole Fusaria Amphotericin b.
    Resum: © 2020 The Authors. Some species of fusaria are well-known pathogens of humans, animals and plants. Fusarium oxysporum and Neocosmospora solani (formerly Fusarium solani) cause human infections that range from onychomycosis or keratitis to severe disseminated infections. In general, these infections are difficult to treat due to poor therapeutic responses in immunocompromised patients. Despite that, little is known about the molecular mechanisms and transcriptional changes responsible for the antifungal resistance in fusaria. To shed light on the transcriptional response to antifungals, we carried out the first reported high-throughput RNA-seq analysis for F. oxysporum and N. solani that had been exposed to amphotericin B (AMB) and posaconazole (PSC). We detected significant differences between the transcriptional profiles of the two species and we found that some oxidation-reduction, metabolic, cellular and transport processes were regulated differentially by both fungi. The same was found with several genes from the ergosterol synthesis, efflux pumps, oxidative stress response and membrane biosynthesis pathways. A significant up-regulation of the C-22 sterol desaturase (ERG5), the sterol 24-C-methyltransferase (ERG6) gene, the glutathione S-transferase (GST) gene and of several members of the major facilitator superfamily (MSF) was demonstrated in this study after treating F. oxysporum with AMB. These results offer a good overview of transcriptional changes after exposure to com-monly used antifungals, highlights the genes that are related to resistance mechanisms of these fungi, which will be a valuable tool for identifying causes of failure of treatments.
    Àrees temàtiques: Química Odontología Nutrição Microbiology Medicina veterinaria Medicina iii Medicina ii Medicina i Interdisciplinar Farmacia Ciências biológicas iii Ciências biológicas ii Ciências biológicas i Ciências ambientais Ciências agrárias i Ciência de alimentos Biotecnología Biodiversidade
    Accès a la llicència d'ús: https://creativecommons.org/licenses/by/3.0/es/
    Adreça de correu electrònic de l'autor: josep.guarro@urv.cat
    Identificador de l'autor: 0000-0002-7839-7568
    Data d'alta del registre: 2024-07-20
    Versió de l'article dipositat: info:eu-repo/semantics/publishedVersion
    Enllaç font original: https://www.microbiologyresearch.org/content/journal/micro/10.1099/mic.0.000927
    URL Document de llicència: http://repositori.urv.cat/ca/proteccio-de-dades/
    Referència a l'article segons font original: Microbiology-Sgm. 166 (10): 936-946
    Referència de l'ítem segons les normes APA: Castillo-Castañeda A; Cañas-Duarte SJ; Guevara-Suarez M; Guarro J; Restrepo S; Celis Ramírez AM (2020). Transcriptional response of fusarium oxysporum and neocosmospora solani challenged with amphotericin B or posaconazole. Microbiology-Sgm, 166(10), 936-946. DOI: 10.1099/mic.0.000927
    DOI de l'article: 10.1099/mic.0.000927
    Entitat: Universitat Rovira i Virgili
    Any de publicació de la revista: 2020
    Tipus de publicació: Journal Publications
  • Paraules clau:

    Microbiology
    Transcriptional changes
    Rna-seq
    Posaconazole
    Fusaria
    Amphotericin b.
    Química
    Odontología
    Nutrição
    Microbiology
    Medicina veterinaria
    Medicina iii
    Medicina ii
    Medicina i
    Interdisciplinar
    Farmacia
    Ciências biológicas iii
    Ciências biológicas ii
    Ciências biológicas i
    Ciências ambientais
    Ciências agrárias i
    Ciência de alimentos
    Biotecnología
    Biodiversidade
  • Documents:

  • Cerca a google

    Search to google scholar