Autor segons l'article: Cabrera Martinez, A; Rodriguez-Velazquez, J A
Departament: Enginyeria Informàtica i Matemàtiques
Autor/s de la URV: CABRERA MARTÍNEZ, ABEL / Rodríguez Velázquez, Juan Alberto
Paraules clau: Roman domination number Roman domination Perfect roman domination Perfect domination Perfect differential of a graph Differential of a graph
Resum: Let G be a graph of order n(G) and vertex set V(G). Given a set S subset of V(G), we define the perfect neighbourhood of S as the set N-p(S) of all vertices in V(G)\S having exactly one neighbour in S. The perfect differential of S is defined to be partial differential partial derivative(p)(S) = vertical bar N-p(S)vertical bar - vertical bar S vertical bar. In this paper, we introduce the study of the perfect differential of a graph, which we define as partial derivative(p)(G) = max{partial derivative(p)(S): S subset of V(G)}. Among other results, we obtain general bounds on partial derivative(p)(G) and we prove a Gallai-type theorem, which states that partial differential partial derivative(p)(G) + gamma(p)(R)(G) = n(G), where gamma(p)(R)(G) denotes the perfect Roman domination number of G. As a consequence of the study, we show some classes of graphs satisfying a conjecture stated by Bermudo
Àrees temàtiques: Mathematics (miscellaneous) Mathematics Matemática / probabilidade e estatística
Accès a la llicència d'ús: https://creativecommons.org/licenses/by/3.0/es/
Adreça de correu electrònic de l'autor: juanalberto.rodriguez@urv.cat
Identificador de l'autor: 0000-0002-9082-7647
Data d'alta del registre: 2024-10-26
Versió de l'article dipositat: info:eu-repo/semantics/submittedVersion
URL Document de llicència: https://repositori.urv.cat/ca/proteccio-de-dades/
Referència a l'article segons font original: Quaestiones Mathematicae. 45 (3): 327-345
Referència de l'ítem segons les normes APA: Cabrera Martinez, A; Rodriguez-Velazquez, J A (2022). ON THE PERFECT DIFFERENTIAL OF A GRAPH. Quaestiones Mathematicae, 45(3), 327-345. DOI: 10.2989/16073606.2020.1858992
Entitat: Universitat Rovira i Virgili
Any de publicació de la revista: 2022
Tipus de publicació: Journal Publications