Autor segons l'article: Gorakifard, Mohsen; Saluena, Clara; Cuesta, Ildefonso; Far, Ehsan Kian;
Departament: Enginyeria Mecànica
Autor/s de la URV: Cuesta Romeo, Ildefonso / Goraki Fard, Mohsen / Salueña Pérez, Clara
Paraules clau: Wind turbines Wind turbine simulation Wind turbine modeling Wind turbine Viscosity Radial point interpolations Parameter dependency Mesh generation Local radial point interpolation methods Local radial point interpolation cumulant lbm Lattice boltzmann methods (lbm) Lattice boltzmann method Kinetic theory Interpolation Dissipation Dispersion Computational efficiency Complex engineering problems Aeroacoustics Acoustic wave propagation Acoustic properties
Resum: The lattice Boltzmann method (LBM) has recently been used to simulate wave propagation, one of the challenging aspects of wind turbine modeling and simulation. However, standard LB methods suffer from the instability that occurs at low viscosities and from its characteristic lattice uniformity, which results in issues of accuracy and computational efficiency following mesh refinement. The local radial point interpolation cumulant lattice Boltzmann method (LRPIC-LBM) is proposed in this paper to overcome these shortcomings. The LB equation is divided into collision and streaming steps. The collision step is modeled by the cumulant method, one of the stable LB methods at low viscosities. In addition, the streaming step, which is naturally a pure advection equation, is discretized in time and space using the Lax-Wendroff scheme and the local radial point interpolation method (RPIM), a mesh free method. We describe the propagation of planar acoustic waves, including the temporal decay of a standing plane wave and the spatial decay of a planar acoustic pulse. The analysis of these specific benchmark problems has yielded qualitative and quantitative data on acoustic dispersion and dissipation, and their deviation from analytical results demonstrates the accuracy of the method. We found that the LRPIC-LBM replicates the analytical results for different viscosities, and the errors of the fundamental acoustic properties are negligible, even for quite low resolutions. Thus, this method may constitute a useful platform for effectively predicting complex engineering problems such as wind turbine simulations, without parameter dependencies such as the number of points per wavelength Nppw and resolution sigma or the detrimental effect caused by the use of coarse grids found in other accurate and stable LB models.
Àrees temàtiques: Zootecnia / recursos pesqueiros Renewable energy, sustainability and the environment Renewable energy, sustainability and the environm Interdisciplinar General computer science Fuel technology Engineering (miscellaneous) Engenharias iv Engenharias iii Engenharias ii Energy engineering and power technology Energy (miscellaneous) Energy & fuels Electrical and electronic engineering Economia Control and optimization Ciências ambientais Ciências agrárias i Ciência da computação Building and construction Biotecnología Biodiversidade Astronomia / física
Accès a la llicència d'ús: https://creativecommons.org/licenses/by/3.0/es/
Adreça de correu electrònic de l'autor: ildefonso.cuesta@urv.cat clara.saluena@urv.cat
Identificador de l'autor: 0000-0002-4948-5569 0000-0001-7595-8588
Data d'alta del registre: 2024-07-27
Volum de revista: 14
Versió de l'article dipositat: info:eu-repo/semantics/publishedVersion
URL Document de llicència: https://repositori.urv.cat/ca/proteccio-de-dades/
Referència a l'article segons font original: Energies. 14 (5):
Referència de l'ítem segons les normes APA: Gorakifard, Mohsen; Saluena, Clara; Cuesta, Ildefonso; Far, Ehsan Kian; (2021). Analysis of Aeroacoustic Properties of the Local Radial Point Interpolation Cumulant Lattice Boltzmann Method. Energies, 14(5), -. DOI: 10.3390/en14051443
Entitat: Universitat Rovira i Virgili
Any de publicació de la revista: 2021
Tipus de publicació: Journal Publications