Articles producció científica> Enginyeria Química

Machine learning in drug design: Use of artificial intelligence to explore the chemical structure-biological activity relationship

  • Dades identificatives

    Identificador: imarina:9225838
  • Autors:

    Staszak, Maciej
    Staszak, Katarzyna
    Wieszczycka, Karolina
    Bajek, Anna
    Roszkowski, Krzysztof
    Tylkowski, Bartosz
  • Altres:

    Autor segons l'article: Staszak, Maciej; Staszak, Katarzyna; Wieszczycka, Karolina; Bajek, Anna; Roszkowski, Krzysztof; Tylkowski, Bartosz;
    Departament: Enginyeria Química
    Autor/s de la URV: Tylkowski, Bartosz
    Paraules clau: Training data Structure (composition) Small molecules Regression Quantum models Prediction Neural networks Neural network systems Neural network Network modeling Multiclass Models Machine learning Level of abstraction Learning techniques Learning systems In-vitro Drug design Discovery Deep learning Database Computing power Classification Chemoinformatics Chemical structure Carcinogenicity Bioactivity Artificial intelligence
    Resum: The paper presents a comprehensive overview of the use of artificial intelligence (AI) systems in drug design. Neural networks, which are one of the systems employed in AI, are used to identify chemical structures that can have medical relevance. Successful training of neural networks must be preceded by the acquisition of relevant information about chemical compounds, functional groups, and their possible biological activity. In general, a neural network requires a large set of training data, which must contain information about the chemical structure-biological activity relationship. The data can come from experimental measurements, but can also be generated using appropriate quantum models. In many of the studies presented below, authors showed a significant potential of neural networks to produce generalizations based on even relatively narrow training data. Despite the fact that neural network systems have been known for more than 40 years, it is only recently that they have seen rapid development due to the wider availability of computing power. In recent years, there has been a growing interest in deep learning techniques, bringing network modeling to a new level of abstraction. Deep learning allows combining what seems to be causally distant phenomena and effects, and to associate facts in a way resembling the human mind. This article is categorized under: Computer and Information Science > Chemoinformatics
    Àrees temàtiques: Physical and theoretical chemistry Mathematical & computational biology Materials chemistry Computer science applications Computational mathematics Chemistry, multidisciplinary Biochemistry
    Accès a la llicència d'ús: https://creativecommons.org/licenses/by/3.0/es/
    Adreça de correu electrònic de l'autor: bartosz.tylkowski@urv.cat
    Identificador de l'autor: 0000-0002-4163-0178
    Data d'alta del registre: 2024-09-07
    Versió de l'article dipositat: info:eu-repo/semantics/publishedVersion
    Enllaç font original: https://wires.onlinelibrary.wiley.com/doi/10.1002/wcms.1568
    URL Document de llicència: https://repositori.urv.cat/ca/proteccio-de-dades/
    Referència a l'article segons font original: Wiley Interdisciplinary Reviews-Computational Molecular Science. 12 (2):
    Referència de l'ítem segons les normes APA: Staszak, Maciej; Staszak, Katarzyna; Wieszczycka, Karolina; Bajek, Anna; Roszkowski, Krzysztof; Tylkowski, Bartosz; (2022). Machine learning in drug design: Use of artificial intelligence to explore the chemical structure-biological activity relationship. Wiley Interdisciplinary Reviews-Computational Molecular Science, 12(2), -. DOI: 10.1002/wcms.1568
    DOI de l'article: 10.1002/wcms.1568
    Entitat: Universitat Rovira i Virgili
    Any de publicació de la revista: 2022
    Tipus de publicació: Journal Publications
  • Paraules clau:

    Biochemistry,Chemistry, Multidisciplinary,Computational Mathematics,Computer Science Applications,Materials Chemistry,Mathematical & Computational Biology,Physical and Theoretical Chemistry
    Training data
    Structure (composition)
    Small molecules
    Regression
    Quantum models
    Prediction
    Neural networks
    Neural network systems
    Neural network
    Network modeling
    Multiclass
    Models
    Machine learning
    Level of abstraction
    Learning techniques
    Learning systems
    In-vitro
    Drug design
    Discovery
    Deep learning
    Database
    Computing power
    Classification
    Chemoinformatics
    Chemical structure
    Carcinogenicity
    Bioactivity
    Artificial intelligence
    Physical and theoretical chemistry
    Mathematical & computational biology
    Materials chemistry
    Computer science applications
    Computational mathematics
    Chemistry, multidisciplinary
    Biochemistry
  • Documents:

  • Cerca a google

    Search to google scholar