Articles producció científica> Gestió d'Empreses

Proposal for a Pivot-Based Vehicle Trajectory Clustering Method

  • Dades identificatives

    Identificador: imarina:9241751
    Autors:
    Reyes, GaryLanzarini, LauraHasperue, WaldoBariviera, Aurelio F.
    Resum:
    Given the large volume of georeferenced information generated and stored by many types of devices, the study and improvement of techniques capable of operating with these data is an area of great interest. The analysis of vehicular trajectories with the aim of forming clusters and identifying emerging patterns is very useful for characterizing and analyzing transportation flows in cities. This paper presents a new trajectory clustering method capable of identifying clusters of vehicular sub-trajectories in various sectors of a city. The proposed method is based on the use of an auxiliary structure to determine the correct location of the centroid of each group or set of sub-trajectories along the adaptive process. The proposed method was applied on three real databases, as well as being compared with other relevant methods, achieving satisfactory results and showing good cluster quality according to the Silhouette index.
  • Altres:

    Autor segons l'article: Reyes, Gary; Lanzarini, Laura; Hasperue, Waldo; Bariviera, Aurelio F.;
    Departament: Gestió d'Empreses
    Autor/s de la URV: Fernández Bariviera, Aurelio
    Paraules clau: Time Similarity Perspective Patterns Pattern recognition Machine learning (artificial intelligence) Gps data Geographic information science Distance Data and data science Artificial intelligence and advanced computing applications
    Resum: Given the large volume of georeferenced information generated and stored by many types of devices, the study and improvement of techniques capable of operating with these data is an area of great interest. The analysis of vehicular trajectories with the aim of forming clusters and identifying emerging patterns is very useful for characterizing and analyzing transportation flows in cities. This paper presents a new trajectory clustering method capable of identifying clusters of vehicular sub-trajectories in various sectors of a city. The proposed method is based on the use of an auxiliary structure to determine the correct location of the centroid of each group or set of sub-trajectories along the adaptive process. The proposed method was applied on three real databases, as well as being compared with other relevant methods, achieving satisfactory results and showing good cluster quality according to the Silhouette index.
    Àrees temàtiques: Transportation science & technology Transportation Mechanical engineering Engineering, civil Engenharias iii Engenharias ii Engenharias i Civil and structural engineering
    Accès a la llicència d'ús: https://creativecommons.org/licenses/by/3.0/es/
    Adreça de correu electrònic de l'autor: aurelio.fernandez@urv.cat
    Identificador de l'autor: 0000-0003-1014-1010
    Data d'alta del registre: 2024-09-07
    Versió de l'article dipositat: info:eu-repo/semantics/acceptedVersion
    Enllaç font original: https://journals.sagepub.com/doi/abs/10.1177/03611981211058429?journalCode=trra
    URL Document de llicència: https://repositori.urv.cat/ca/proteccio-de-dades/
    Referència a l'article segons font original: Transportation Research Record. 2676 (4): 281-295
    Referència de l'ítem segons les normes APA: Reyes, Gary; Lanzarini, Laura; Hasperue, Waldo; Bariviera, Aurelio F.; (2022). Proposal for a Pivot-Based Vehicle Trajectory Clustering Method. Transportation Research Record, 2676(4), 281-295. DOI: 10.1177/03611981211058429
    DOI de l'article: 10.1177/03611981211058429
    Entitat: Universitat Rovira i Virgili
    Any de publicació de la revista: 2022
    Tipus de publicació: Journal Publications
  • Paraules clau:

    Civil and Structural Engineering,Engineering, Civil,Mechanical Engineering,Transportation,Transportation Science & Technology
    Time
    Similarity
    Perspective
    Patterns
    Pattern recognition
    Machine learning (artificial intelligence)
    Gps data
    Geographic information science
    Distance
    Data and data science
    Artificial intelligence and advanced computing applications
    Transportation science & technology
    Transportation
    Mechanical engineering
    Engineering, civil
    Engenharias iii
    Engenharias ii
    Engenharias i
    Civil and structural engineering
  • Documents:

  • Cerca a google

    Search to google scholar