Autor segons l'article: Farras O
Departament: Enginyeria Informàtica i Matemàtiques
Autor/s de la URV: Farràs Ventura, Oriol
Paraules clau: Secret sharing schemes Matroids Matroid ports
Resum: A secret sharing scheme is ideal if the size of each share is equal to the size of the secret. Brickell and Davenport showed that the access structure of an ideal secret sharing scheme is determined by a matroid. Namely, the minimal authorized subsets of an ideal secret sharing scheme are in correspondence with the circuits of a matroid containing a fixed point. In this case, we say that the access structure is a matroid port. It is known that, for an access structure, being a matroid port is not a suficient condition to admit an ideal secret sharing scheme. In this work we present a linear secret sharing scheme construction for ports of matroids of rank 3 in which the size of each share is at most n times the size of the secret. Using the previously known secret sharing constructions, the size of each share was O(n2= log n) the size of the secret. Our construction is extended to ports of matroids of any rank k 2, obtaining secret sharing schemes in which the size of each share is at most nk-2 times the size of the secret. This work is complemented by presenting lower bounds: There exist matroid ports that require (Fq; )-linear secret schemes with total information ratio (2n=2=n3=4p log q). © 2020 Institute of Information Theory and Automation of The Czech Academy of Sciences. All rights reserved.
Àrees temàtiques: Theoretical computer science Software Information systems Electrical and electronic engineering Control and systems engineering Computer science, cybernetics Ciência da computação Artificial intelligence
Accès a la llicència d'ús: https://creativecommons.org/licenses/by/3.0/es/
Adreça de correu electrònic de l'autor: oriol.farras@urv.cat
Identificador de l'autor: 0000-0002-7495-5980
Data d'alta del registre: 2023-08-05
Versió de l'article dipositat: info:eu-repo/semantics/publishedVersion
Enllaç font original: https://www.kybernetika.cz/content/2020/5/903
Referència a l'article segons font original: Kybernetika. 56 (5): 903-915
Referència de l'ítem segons les normes APA: Farras O (2020). SECRET SHARING SCHEMES for PORTS of MATROIDS of RANK 3. Kybernetika, 56(5), 903-915. DOI: 10.14736/kyb-2020-5-0903
URL Document de llicència: https://repositori.urv.cat/ca/proteccio-de-dades/
DOI de l'article: 10.14736/kyb-2020-5-0903
Entitat: Universitat Rovira i Virgili
Any de publicació de la revista: 2020
Tipus de publicació: Journal Publications