Autor segons l'article: Rica, Elena; Alvarez, Susana; Serratosa, Francesc
Departament: Enginyeria Informàtica i Matemàtiques
Autor/s de la URV: Alvarez Fernandez, Susana Maria / Rica Alarcón, María Elena / Serratosa Casanelles, Francesc d'Assís
Paraules clau: Virtual screening User-computer interface Structure activity relationships Structure activity relation Pharmacophore Molecular similarity Models, theoretical Machine learning Ligands Graph edit distance Extended reduced graph Computer graphics Biological activity Artificial intelligence Article Algorithms Algorithm validation structure activity relationships sets molecular similarity machine learning graph edit distance extended reduced graph diversity analysis design descriptor computation chemistry chemical-structures
Resum: Chemical compounds can be represented as attributed graphs. An attributed graph is a mathematical model of an object composed of two types of representations: nodes and edges. Nodes are individual components, and edges are relations between these components. In this case, pharmacophore-type node descriptions are represented by nodes and chemical bounds by edges. If we want to obtain the bioactivity dissimilarity between two chemical compounds, a distance between attributed graphs can be used. The Graph Edit Distance allows computing this distance, and it is defined as the cost of transforming one graph into another. Nevertheless, to define this dissimilarity, the transformation cost must be properly tuned. The aim of this paper is to analyse the structural-based screening methods to verify the quality of the Harper transformation costs proposal and to present an algorithm to learn these transformation costs such that the bioactivity dissimilarity is properly defined in a ligand-based virtual screening application. The goodness of the dissimilarity is represented by the classification accuracy. Six publicly available datasets—CAPST, DUD-E, GLL&GDD, NRLiSt-BDB, MUV and ULS-UDS—have been used to validate our methodology and show that with our learned costs, we obtain the highest ratios in identifying the bioactivity similarity in a structurally diverse group of molecules. © 2021 by the authors. Licensee MDPI, Basel, Switzerland.
Àrees temàtiques: Zootecnia / recursos pesqueiros Spectroscopy Saúde coletiva Química Psicología Physical and theoretical chemistry Organic chemistry Odontología Nutrição Molecular biology Medicine (miscellaneous) Medicina veterinaria Medicina iii Medicina ii Medicina i Materiais Interdisciplinar Inorganic chemistry Geociências Farmacia Engenharias iv Engenharias ii Engenharias i Educação física Computer science applications Ciências biológicas iii Ciências biológicas ii Ciências biológicas i Ciências ambientais Ciências agrárias i Ciência de alimentos Ciência da computação Chemistry, multidisciplinary Catalysis Biotecnología Biodiversidade Biochemistry & molecular biology Astronomia / física
Accès a la llicència d'ús: https://creativecommons.org/licenses/by/3.0/es/
Adreça de correu electrònic de l'autor: mariaelena.rica@estudiants.urv.cat mariaelena.rica@estudiants.urv.cat susana.alvarez@urv.cat francesc.serratosa@urv.cat
Identificador de l'autor: 0000-0002-1376-2034 0000-0001-6112-5913
Data d'alta del registre: 2024-10-12
Versió de l'article dipositat: info:eu-repo/semantics/publishedVersion
URL Document de llicència: https://repositori.urv.cat/ca/proteccio-de-dades/
Referència a l'article segons font original: International Journal Of Molecular Sciences. 22 (23): 12751-
Referència de l'ítem segons les normes APA: Rica, Elena; Alvarez, Susana; Serratosa, Francesc (2021). Ligand-based virtual screening based on the graph edit distance. International Journal Of Molecular Sciences, 22(23), 12751-. DOI: 10.3390/ijms222312751
Entitat: Universitat Rovira i Virgili
Any de publicació de la revista: 2021
Tipus de publicació: Journal Publications