Articles producció científica> Enginyeria Informàtica i Matemàtiques

Non-bifurcation of critical periods from semi-hyperbolic polycycles of quadratic centres

  • Dades identificatives

    Identificador: imarina:9242292
    Autors:
    Marín, D.Saavedra, M.Villadelprat, J.
    Resum:
    In this paper we consider the unfolding of saddle-node X=1xUa(x,y)(x(xμ−ε)∂x−Va(x)y∂y), parametrized by (ε,a) with ε≈0 and a in an open subset A of Rα, and we study the Dulac time T(s;ε,a) of one of its hyperbolic sectors. We prove (theorem 1.1) that the derivative ∂sT(s;ε,a) tends to −∞ as (s,ε)→(0+,0) uniformly on compact subsets of A. This result is addressed to study the bifurcation of critical periods in the Loud's family of quadratic centres. In this regard we show (theorem 1.2) that no bifurcation occurs from certain semi-hyperbolic polycycles.
  • Altres:

    Autor segons l'article: Marín, D.; Saavedra, M.; Villadelprat, J.
    Departament: Enginyeria Informàtica i Matemàtiques
    Codi de projecte: PID2020-118281GB-C33
    Resum: In this paper we consider the unfolding of saddle-node X=1xUa(x,y)(x(xμ−ε)∂x−Va(x)y∂y), parametrized by (ε,a) with ε≈0 and a in an open subset A of Rα, and we study the Dulac time T(s;ε,a) of one of its hyperbolic sectors. We prove (theorem 1.1) that the derivative ∂sT(s;ε,a) tends to −∞ as (s,ε)→(0+,0) uniformly on compact subsets of A. This result is addressed to study the bifurcation of critical periods in the Loud's family of quadratic centres. In this regard we show (theorem 1.2) that no bifurcation occurs from certain semi-hyperbolic polycycles.
    Accès a la llicència d'ús: https://creativecommons.org/licenses/by/3.0/es/
    Adreça de correu electrònic de l'autor: jordi.villadelprat@urv.cat
    Versió de l'article dipositat: info:eu-repo/semantics/publishedVersion
    Enllaç font original: https://www.cambridge.org/core/journals/proceedings-of-the-royal-society-of-edinburgh-section-a-mathematics/article/nonbifurcation-of-critical-periods-from-semihyperbolic-polycycles-of-quadratic-centres/073FECBF28E5CAD0FA0C6345E712F2DA
    Programa de finançament: Herramientas para el análisis de diagramas de bifurcación en sistemas dinámicos
    Acrònim: ATBiD
    DOI de l'article: 10.1017/prm.2021.72
    Any de publicació de la revista: 2023
    Acció del programa de finançament: Proyectos I+D Generación de Conocimiento
    Tipus de publicació: info:eu-repo/semantics/article
  • Paraules clau:

    Period function, saddle-node unfolding, Dulac time, asymptotic expansions
  • Documents:

  • Cerca a google

    Search to google scholar