Articles producció científica> Enginyeria Electrònica, Elèctrica i Automàtica

Metabolite discovery: Biochemistry's scientific driver

  • Dades identificatives

    Identificador: imarina:9242580
    Autors:
    Giera, MartinYanes, OscarSiuzdak, Gary
    Resum:
    Metabolite identification represents a major challenge, and opportunity, for biochemistry. The collective characterization and quantification of metabolites in living organisms, with its many successes, represents a major biochemical knowledgebase and the foundation of metabolism's rebirth in the 21st century; yet, characterizing newly observed metabolites has been an enduring obstacle. Crystallography and NMR spectroscopy have been of extraordinary importance, although their applicability in resolving metabolism's fine structure has been restricted by their intrinsic requirement of sufficient and sufficiently pure materials. Mass spectrometry has been a key technology, especially when coupled with high-performance separation technologies and emerging informatic and database solutions. Even more so, the collective of artificial intelligence technologies are rapidly evolving to help solve the metabolite characterization conundrum. This perspective describes this challenge, how it was historically addressed, and how metabolomics is evolving to address it today and in the future.Copyright © 2021. Published by Elsevier Inc.
  • Altres:

    Autor segons l'article: Giera, Martin; Yanes, Oscar; Siuzdak, Gary
    Departament: Enginyeria Electrònica, Elèctrica i Automàtica
    Autor/s de la URV: Yanes Torrado, Óscar
    Paraules clau: Unknowns Structure Nuclear magnetic resonance Metabolites Mass-spectrometry data Mass spectrometry Biochemistry Artificial intelligence platform nmr-spectroscopy metabolomics induced dissociation identification deconvolution computational tool chromatography acids
    Resum: Metabolite identification represents a major challenge, and opportunity, for biochemistry. The collective characterization and quantification of metabolites in living organisms, with its many successes, represents a major biochemical knowledgebase and the foundation of metabolism's rebirth in the 21st century; yet, characterizing newly observed metabolites has been an enduring obstacle. Crystallography and NMR spectroscopy have been of extraordinary importance, although their applicability in resolving metabolism's fine structure has been restricted by their intrinsic requirement of sufficient and sufficiently pure materials. Mass spectrometry has been a key technology, especially when coupled with high-performance separation technologies and emerging informatic and database solutions. Even more so, the collective of artificial intelligence technologies are rapidly evolving to help solve the metabolite characterization conundrum. This perspective describes this challenge, how it was historically addressed, and how metabolomics is evolving to address it today and in the future.Copyright © 2021. Published by Elsevier Inc.
    Àrees temàtiques: Physiology Odontología Molecular biology Medicina ii Medicina i Interdisciplinar General medicine Endocrinology & metabolism Educação física Ciências biológicas ii Ciências biológicas i Cell biology
    Accès a la llicència d'ús: https://creativecommons.org/licenses/by/3.0/es/
    Adreça de correu electrònic de l'autor: oscar.yanes@urv.cat
    Identificador de l'autor: 0000-0003-3695-7157
    Data d'alta del registre: 2024-10-12
    Versió de l'article dipositat: info:eu-repo/semantics/submittedVersion
    Enllaç font original: https://www.sciencedirect.com/science/article/abs/pii/S1550413121005337
    URL Document de llicència: https://repositori.urv.cat/ca/proteccio-de-dades/
    Referència a l'article segons font original: Cell Metabolism. 34 (1): 21-34
    Referència de l'ítem segons les normes APA: Giera, Martin; Yanes, Oscar; Siuzdak, Gary (2022). Metabolite discovery: Biochemistry's scientific driver. Cell Metabolism, 34(1), 21-34. DOI: 10.1016/j.cmet.2021.11.005
    DOI de l'article: 10.1016/j.cmet.2021.11.005
    Entitat: Universitat Rovira i Virgili
    Any de publicació de la revista: 2022
    Tipus de publicació: Journal Publications
  • Paraules clau:

    Cell Biology,Endocrinology & Metabolism,Molecular Biology,Physiology
    Unknowns
    Structure
    Nuclear magnetic resonance
    Metabolites
    Mass-spectrometry data
    Mass spectrometry
    Biochemistry
    Artificial intelligence
    platform
    nmr-spectroscopy
    metabolomics
    induced dissociation
    identification
    deconvolution
    computational tool
    chromatography
    acids
    Physiology
    Odontología
    Molecular biology
    Medicina ii
    Medicina i
    Interdisciplinar
    General medicine
    Endocrinology & metabolism
    Educação física
    Ciências biológicas ii
    Ciências biológicas i
    Cell biology
  • Documents:

  • Cerca a google

    Search to google scholar