Articles producció científica> Enginyeria Electrònica, Elèctrica i Automàtica

Physics-Based DC Compact Modeling of Schottky Barrier and Reconfigurable Field-Effect Transistors

  • Dades identificatives

    Identificador: imarina:9243274
    Autors:
    Roemer CDarbandy GSchwarz MTrommer JHeinzig AMikolajick TWeber WMIniguez BKloes A
    Resum:
    A closed-form and physics-based compact model is presented for calculating the DC characteristics of Schottky barrier field-effect transistors and dual gated reconfigurable field-effect transistors. The given model calculates the charge-carrier injection over the Schottky barriers. This current is separated into a field emission current, given by charge carriers tunneling through the Schottky barriers and a thermionic emission current, given by charge carriers overcoming the Schottky barriers. The model verification is done by comparing the model results to measurements and TCAD simulations.
  • Altres:

    Autor segons l'article: Roemer C; Darbandy G; Schwarz M; Trommer J; Heinzig A; Mikolajick T; Weber WM; Iniguez B; Kloes A
    Departament: Enginyeria Electrònica, Elèctrica i Automàtica
    Autor/s de la URV: Iñiguez Nicolau, Benjamin
    Paraules clau: Tunneling current. Tunneling Transistors Thermionic emission Silicon-nanowire transistors Schottky barriers Schottky barrier Sbfet Rfet Mathematical models Logic gates Junctions Field emission Electric potential Compact modeling Closed-form tunneling current tunneling transistors thermionic emission schottky barriers schottky barrier sbfet rfet mathematical models junctions field emission electric potential compact modeling closed-form
    Resum: A closed-form and physics-based compact model is presented for calculating the DC characteristics of Schottky barrier field-effect transistors and dual gated reconfigurable field-effect transistors. The given model calculates the charge-carrier injection over the Schottky barriers. This current is separated into a field emission current, given by charge carriers tunneling through the Schottky barriers and a thermionic emission current, given by charge carriers overcoming the Schottky barriers. The model verification is done by comparing the model results to measurements and TCAD simulations.
    Àrees temàtiques: Engineering, electrical & electronic Electronic, optical and magnetic materials Electrical and electronic engineering Biotechnology
    Accès a la llicència d'ús: https://creativecommons.org/licenses/by/3.0/es/
    Adreça de correu electrònic de l'autor: benjamin.iniguez@urv.cat
    Identificador de l'autor: 0000-0002-6504-7980
    Data d'alta del registre: 2024-09-07
    Versió de l'article dipositat: info:eu-repo/semantics/publishedVersion
    URL Document de llicència: https://repositori.urv.cat/ca/proteccio-de-dades/
    Referència a l'article segons font original: Ieee Journal Of The Electron Devices Society. 10 416-423
    Referència de l'ítem segons les normes APA: Roemer C; Darbandy G; Schwarz M; Trommer J; Heinzig A; Mikolajick T; Weber WM; Iniguez B; Kloes A (2022). Physics-Based DC Compact Modeling of Schottky Barrier and Reconfigurable Field-Effect Transistors. Ieee Journal Of The Electron Devices Society, 10(), 416-423. DOI: 10.1109/JEDS.2021.3136981
    Entitat: Universitat Rovira i Virgili
    Any de publicació de la revista: 2022
    Tipus de publicació: Journal Publications
  • Paraules clau:

    Biotechnology,Electrical and Electronic Engineering,Electronic, Optical and Magnetic Materials,Engineering, Electrical & Electronic
    Tunneling current.
    Tunneling
    Transistors
    Thermionic emission
    Silicon-nanowire transistors
    Schottky barriers
    Schottky barrier
    Sbfet
    Rfet
    Mathematical models
    Logic gates
    Junctions
    Field emission
    Electric potential
    Compact modeling
    Closed-form
    tunneling current
    tunneling
    transistors
    thermionic emission
    schottky barriers
    schottky barrier
    sbfet
    rfet
    mathematical models
    junctions
    field emission
    electric potential
    compact modeling
    closed-form
    Engineering, electrical & electronic
    Electronic, optical and magnetic materials
    Electrical and electronic engineering
    Biotechnology
  • Documents:

  • Cerca a google

    Search to google scholar