Articles producció científica> Enginyeria Informàtica i Matemàtiques

Invoice #31415 attached: Automated analysis of malicious Microsoft Office documents

  • Dades identificatives

    Identificador: imarina:9246549
    Autors:
    Koutsokostas, VLykousas, NApostolopoulos, TOrazi, GGhosal, ACasino, FConti, MPatsakis, C
    Resum:
    Microsoft Office may be by far the most widely used suite for processing documents, spreadsheets, and presentations. Due to its popularity, it is continuously utilised to carry out malicious campaigns. Threat actors, exploiting the platform's dynamic features, use it to launch their attacks and penetrate millions of hosts in their campaigns.This work explores the modern landscape of malicious Microsoft Office documents, exposing the means that malware authors use. We leverage a taxonomy of the tools used to weaponise Microsoft Office documents and explore the modus operandi of malicious actors. Moreover, we generated and publicly shared a specially crafted dataset, which relies on incorporating benign and malicious documents containing many dynamic features such as VBA macros and DDE. The latter is crucial for a fair and realistic analysis, an open issue in the current state of the art. This allows us to draw safe conclusions on the malicious features and behaviour. More precisely, we extract the necessary features with an automated analysis pipeline to efficiently and accurately classify a document as benign or malicious using machine learning with an F-1 score above 0.98, outperforming the current state of the art detection algorithms. (C) 2021 The Authors. Published by Elsevier Ltd.
  • Altres:

    Autor segons l'article: Koutsokostas, V; Lykousas, N; Apostolopoulos, T; Orazi, G; Ghosal, A; Casino, F; Conti, M; Patsakis, C
    Departament: Enginyeria Informàtica i Matemàtiques
    Autor/s de la URV: Casino Cembellín, Francisco José
    Paraules clau: Lolbas Macro malware Malware Office documents Powershell
    Resum: Microsoft Office may be by far the most widely used suite for processing documents, spreadsheets, and presentations. Due to its popularity, it is continuously utilised to carry out malicious campaigns. Threat actors, exploiting the platform's dynamic features, use it to launch their attacks and penetrate millions of hosts in their campaigns.This work explores the modern landscape of malicious Microsoft Office documents, exposing the means that malware authors use. We leverage a taxonomy of the tools used to weaponise Microsoft Office documents and explore the modus operandi of malicious actors. Moreover, we generated and publicly shared a specially crafted dataset, which relies on incorporating benign and malicious documents containing many dynamic features such as VBA macros and DDE. The latter is crucial for a fair and realistic analysis, an open issue in the current state of the art. This allows us to draw safe conclusions on the malicious features and behaviour. More precisely, we extract the necessary features with an automated analysis pipeline to efficiently and accurately classify a document as benign or malicious using machine learning with an F-1 score above 0.98, outperforming the current state of the art detection algorithms. (C) 2021 The Authors. Published by Elsevier Ltd.
    Àrees temàtiques: Administração pública e de empresas, ciências contábeis e turismo Ciência da computação Ciências agrárias i Ciencias sociales Computer science (all) Computer science (miscellaneous) Computer science, information systems Engenharias iv General computer science Law
    Accès a la llicència d'ús: https://creativecommons.org/licenses/by/3.0/es/
    Adreça de correu electrònic de l'autor: franciscojose.casino@urv.cat
    Identificador de l'autor: 0000-0003-4296-2876
    Data d'alta del registre: 2024-10-12
    Versió de l'article dipositat: info:eu-repo/semantics/publishedVersion
    Referència a l'article segons font original: Computers & Security. 114
    Referència de l'ítem segons les normes APA: Koutsokostas, V; Lykousas, N; Apostolopoulos, T; Orazi, G; Ghosal, A; Casino, F; Conti, M; Patsakis, C (2022). Invoice #31415 attached: Automated analysis of malicious Microsoft Office documents. Computers & Security, 114(), -. DOI: 10.1016/j.cose.2021.102582
    URL Document de llicència: https://repositori.urv.cat/ca/proteccio-de-dades/
    Entitat: Universitat Rovira i Virgili
    Any de publicació de la revista: 2022
    Tipus de publicació: Journal Publications
  • Paraules clau:

    Computer Science (Miscellaneous),Computer Science, Information Systems,Law
    Lolbas
    Macro malware
    Malware
    Office documents
    Powershell
    Administração pública e de empresas, ciências contábeis e turismo
    Ciência da computação
    Ciências agrárias i
    Ciencias sociales
    Computer science (all)
    Computer science (miscellaneous)
    Computer science, information systems
    Engenharias iv
    General computer science
    Law
  • Documents:

  • Cerca a google

    Search to google scholar