Articles producció científica> Enginyeria Informàtica i Matemàtiques

On the cyclicity of Kolmogorov polycycles

  • Dades identificatives

    Identificador: imarina:9280619
    Autors:
    Marin, DavidVilladelprat, Jordi
    Resum:
    In this paper we study planar polynomial Kolmogorov's differential systems Xμ{x˙=f(x,y;μ),y˙=g(x,y;μ), with the parameter μ varying in an open subset Λ⊂RN . Compactifying Xμ to the Poincaré disc, the boundary of the first quadrant is an invariant triangle Γ , that we assume to be a hyperbolic polycycle with exactly three saddle points at its vertices for all μ∈Λ. We are interested in the cyclicity of Γ inside the family {Xμ}μ∈Λ, i.e., the number of limit cycles that bifurcate from Γ as we perturb μ. In our main result we define three functions that play the same role for the cyclicity of the polycycle as the first three Lyapunov quantities for the cyclicity of a focus. As an application we study two cubic Kolmogorov families, with N=3 and N=5 , and in both cases we are able to determine the cyclicity of the polycycle for all μ∈Λ, including those parameters for which the return map along Γ is the identity.
  • Altres:

    Autor segons l'article: Marin, David; Villadelprat, Jordi
    Versió de l'article dipositat: info:eu-repo/semantics/publishedVersion
    Departament: Enginyeria Informàtica i Matemàtiques
    Programa de finançament: Herramientas para el análisis de diagramas de bifurcación en sistemas dinámicos
    Codi de projecte: PID2020-118281GB-C33
    Acrònim: ATBiD
    Resum: In this paper we study planar polynomial Kolmogorov's differential systems Xμ{x˙=f(x,y;μ),y˙=g(x,y;μ), with the parameter μ varying in an open subset Λ⊂RN . Compactifying Xμ to the Poincaré disc, the boundary of the first quadrant is an invariant triangle Γ , that we assume to be a hyperbolic polycycle with exactly three saddle points at its vertices for all μ∈Λ. We are interested in the cyclicity of Γ inside the family {Xμ}μ∈Λ, i.e., the number of limit cycles that bifurcate from Γ as we perturb μ. In our main result we define three functions that play the same role for the cyclicity of the polycycle as the first three Lyapunov quantities for the cyclicity of a focus. As an application we study two cubic Kolmogorov families, with N=3 and N=5 , and in both cases we are able to determine the cyclicity of the polycycle for all μ∈Λ, including those parameters for which the return map along Γ is the identity.
    Any de publicació de la revista: 2022
    Accès a la llicència d'ús: https://creativecommons.org/licenses/by/3.0/es/
    Adreça de correu electrònic de l'autor: jordi.villadelprat@urv.cat
    Acció del programa de finançament: Proyectos I+D Generación de Conocimiento
    Tipus de publicació: info:eu-repo/semantics/article
  • Paraules clau:

    limit cycle, polycycle, cyclicity, asymptotic expansion
  • Documents:

  • Cerca a google

    Search to google scholar