Autor segons l'article: Abdel-Nasser, Mohamed; Melendez, Jaime; Moreno, Antonio; Puig, Domenec
Departament: Enginyeria Informàtica i Matemàtiques
Autor/s de la URV: Abdelnasser Mohamed Mahmoud, Mohamed / Moreno Ribas, Antonio / Puig Valls, Domènec Savi
Paraules clau: X ray screens Texture analysis method Support vector machines Spatial arrangements Sequential forward selection Pixels Nonlinear support vector machines Mass classifications Mammography Image segmentation Image processing Feature normalization Classification performance Classification (of information) Breast density estimation
Resum: Texture analysis methods are widely used to characterize breast masses in mammograms. Texture gives information about the spatial arrangement of the intensities in the region of interest. This information has been used in mammogram analysis applications such as mass detection, mass classification, and breast density estimation. In this paper, we study the effect of factors such as pixel resolution, integration scale, preprocessing, and feature normalization on the performance of those texture methods for mass classification. The classification performance was assessed considering linear and nonlinear support vector machine classifiers. To find the best combination among the studied factors, we used three approaches: greedy, sequential forward selection (SFS), and exhaustive search. On the basis of our study, we conclude that the factors studied affect the performance of texture methods, so the best combination of these factors should be determined to achieve the best performance with each texture method. SFS can be an appropriate way to approach the factor combination problem because it is less computationally intensive than the other methods. © 2016 Mohamed Abdel-Nasser et al.
Àrees temàtiques: Optics Electronic, optical and magnetic materials Atomic and molecular physics, and optics
Adreça de correu electrònic de l'autor: mohamed.abdelnasser@urv.cat antonio.moreno@urv.cat domenec.puig@urv.cat
Identificador de l'autor: 0000-0002-1074-2441 0000-0003-3945-2314 0000-0002-0562-4205
Data d'alta del registre: 2024-10-12
Versió de l'article dipositat: info:eu-repo/semantics/publishedVersion
URL Document de llicència: https://repositori.urv.cat/ca/proteccio-de-dades/
Referència a l'article segons font original: International Journal Of Optics. 2016 1370259-
Referència de l'ítem segons les normes APA: Abdel-Nasser, Mohamed; Melendez, Jaime; Moreno, Antonio; Puig, Domenec (2016). The impact of pixel resolution, integration scale, preprocessing, and feature normalization on texture analysis for mass classification in mammograms. International Journal Of Optics, 2016(), 1370259-. DOI: 10.1155/2016/1370259
Entitat: Universitat Rovira i Virgili
Any de publicació de la revista: 2016
Tipus de publicació: Journal Publications