Articles producció científica> Enginyeria Informàtica i Matemàtiques

Effective ML-based quality of life prediction approach for dependent people in guardianship entities

  • Dades identificatives

    Identificador: imarina:9285923
  • Autors:

    Yadav GK
    Vidales BM
    Rashwan HA
    Oliver J
    Puig D
    Nandi GC
    Abdel-Nasser M
  • Altres:

    Autor segons l'article: Yadav GK; Vidales BM; Rashwan HA; Oliver J; Puig D; Nandi GC; Abdel-Nasser M
    Departament: Enginyeria Informàtica i Matemàtiques
    Autor/s de la URV: Abdelnasser Mohamed Mahmoud, Mohamed / Puig Valls, Domènec Savi
    Paraules clau: Support intensity scale Quality of life Priority of care Machine learning Intellectual-disability Intellectual disability supports support intensity scale priority of care machine learning intellectual disability field adults
    Resum: This paper proposes an effective approach for predicting quality of life (QoL) for dependent individuals in guardianship entities. In addition, it aims to improve the QoL of people with intellectual disabilities. The proposed QoL prediction approach employs machine learning (ML) techniques to model the relationship between eight aspects of QoL and the corresponding QoL index. It determines whether or not a person needs assistance based on the index value. The proposed approach determines the priority of care (PoC) value for each aspect of a person. Based on PoC, the deficit aspect is determined, followed by the type of assistance a person requires, based on the decision priorities. It also generates a support report with suggested actions to highlight the level in that aspect. In addition, we train multiple ML models to predict the standard score (SS), which represents the support value related to the eight aspects of QoL. Finally, we use SS values to train an ML model to predict the support intensity scale (SIS). On a dataset compiled from guardianship entities, the proposed approach is validated. The QoL index, SS, and SIS prediction models achieve average R2 values of 0.9897, 0.9998, and 0.9977 with a standard deviation of 0.0051, 0.0002, and 0.0007, respectively.
    Àrees temàtiques: General engineering Farmacia Engineering, multidisciplinary Engineering (miscellaneous) Engineering (all)
    Accès a la llicència d'ús: https://creativecommons.org/licenses/by/3.0/es/
    Adreça de correu electrònic de l'autor: mohamed.abdelnasser@urv.cat domenec.puig@urv.cat
    Identificador de l'autor: 0000-0002-1074-2441 0000-0002-0562-4205
    Data d'alta del registre: 2024-08-03
    Versió de l'article dipositat: info:eu-repo/semantics/publishedVersion
    Enllaç font original: https://www.sciencedirect.com/science/article/pii/S1110016822006846
    URL Document de llicència: https://repositori.urv.cat/ca/proteccio-de-dades/
    Referència a l'article segons font original: Alexandria Engineering Journal. 65 909-919
    Referència de l'ítem segons les normes APA: Yadav GK; Vidales BM; Rashwan HA; Oliver J; Puig D; Nandi GC; Abdel-Nasser M (2023). Effective ML-based quality of life prediction approach for dependent people in guardianship entities. Alexandria Engineering Journal, 65(), 909-919. DOI: 10.1016/j.aej.2022.10.028
    DOI de l'article: 10.1016/j.aej.2022.10.028
    Entitat: Universitat Rovira i Virgili
    Any de publicació de la revista: 2023
    Tipus de publicació: Journal Publications
  • Paraules clau:

    Engineering (Miscellaneous),Engineering, Multidisciplinary
    Support intensity scale
    Quality of life
    Priority of care
    Machine learning
    Intellectual-disability
    Intellectual disability
    supports
    support intensity scale
    priority of care
    machine learning
    intellectual disability
    field
    adults
    General engineering
    Farmacia
    Engineering, multidisciplinary
    Engineering (miscellaneous)
    Engineering (all)
  • Documents:

  • Cerca a google

    Search to google scholar