Articles producció científica> Psicologia

Multiple Imputation of missing values in exploratory factor analysis of multidimensional scales: estimating latent trait scores

  • Dades identificatives

    Identificador: imarina:9286576
    Autors:
    Lorenzo-Seva, UrbanoVan Ginkel, Joost R.
    Resum:
    Researchers frequently have to analyze scales in which some participants have failed to respond to some items. In this paper we focus on the exploratory factor analysis of multidimensional scales (i.e., scales that consist of a number of subscales) where each subscale is made up of a number of Liken-type items, and the aim of the analysis is to estimate participants' scores on the corresponding latent traits. We propose a new approach to deal with missing responses in such a situation that is based on (1) multiple imputation of non-responses and (2) simultaneous rotation of the imputed datasets. We applied the approach in a real dataset where missing responses were artificially introduced following a real pattern of non-responses, and a simulation study based on artificial datasets. The results show that our approach (specifically, Hot-Deck multiple imputation followed of Consensus Promin rotation) was able to successfully compute factor score estimates even for participants that have missing data.
  • Altres:

    Autor segons l'article: Lorenzo-Seva, Urbano; Van Ginkel, Joost R.;
    Departament: Psicologia
    Autor/s de la URV: Lorenzo Seva, Urbano
    Paraules clau: Variables Predictive mean matching imputation Parameters Optimal agreement Oblique factor rotation Multiple imputation Missing data Loading matrices Hot-deck imputation Factor scores Exploratory factor analysis Consensus rotation
    Resum: Researchers frequently have to analyze scales in which some participants have failed to respond to some items. In this paper we focus on the exploratory factor analysis of multidimensional scales (i.e., scales that consist of a number of subscales) where each subscale is made up of a number of Liken-type items, and the aim of the analysis is to estimate participants' scores on the corresponding latent traits. We propose a new approach to deal with missing responses in such a situation that is based on (1) multiple imputation of non-responses and (2) simultaneous rotation of the imputed datasets. We applied the approach in a real dataset where missing responses were artificially introduced following a real pattern of non-responses, and a simulation study based on artificial datasets. The results show that our approach (specifically, Hot-Deck multiple imputation followed of Consensus Promin rotation) was able to successfully compute factor score estimates even for participants that have missing data.
    Àrees temàtiques: Saúde coletiva Revistas ciencias del comportamiento Psychology, multidisciplinary Psychology (miscellaneous) Psychology (all) Psychology Psicología Medicina i General psychology Educação Ciencias sociales
    Accès a la llicència d'ús: https://creativecommons.org/licenses/by/3.0/es/
    Adreça de correu electrònic de l'autor: urbano.lorenzo@urv.cat
    Identificador de l'autor: 0000-0001-5369-3099
    Data d'alta del registre: 2024-09-07
    Versió de l'article dipositat: info:eu-repo/semantics/publishedVersion
    Enllaç font original: https://revistas.um.es/analesps/article/view/analesps.32.2.215161
    URL Document de llicència: https://repositori.urv.cat/ca/proteccio-de-dades/
    Referència a l'article segons font original: Anales De Psicologia. 32 (2): 596-608
    Referència de l'ítem segons les normes APA: Lorenzo-Seva, Urbano; Van Ginkel, Joost R.; (2016). Multiple Imputation of missing values in exploratory factor analysis of multidimensional scales: estimating latent trait scores. Anales De Psicologia, 32(2), 596-608. DOI: 10.6018/analesps.32.2.215161
    DOI de l'article: 10.6018/analesps.32.2.215161
    Entitat: Universitat Rovira i Virgili
    Any de publicació de la revista: 2016
    Tipus de publicació: Journal Publications
  • Paraules clau:

    Psychology,Psychology (Miscellaneous),Psychology, Multidisciplinary
    Variables
    Predictive mean matching imputation
    Parameters
    Optimal agreement
    Oblique factor rotation
    Multiple imputation
    Missing data
    Loading matrices
    Hot-deck imputation
    Factor scores
    Exploratory factor analysis
    Consensus rotation
    Saúde coletiva
    Revistas ciencias del comportamiento
    Psychology, multidisciplinary
    Psychology (miscellaneous)
    Psychology (all)
    Psychology
    Psicología
    Medicina i
    General psychology
    Educação
    Ciencias sociales
  • Documents:

  • Cerca a google

    Search to google scholar