Autor segons l'article: Negri, Valentina; Vazquez, Daniel; Sales-Pardo, Marta; Guimera, Roger; Guillen-Gosalbez, Gonzalo
Departament: Enginyeria Química
Autor/s de la URV: Guimera Manrique, Roger / Sales Pardo, Marta
Paraules clau: Optimal process design surrogate models storage regression optimization natural-gas flexibility analysis dioxide chemical absorption carbon-capture
Resum: Process modeling has become a fundamental tool to guide experimental work. Unfortunately, process models based on first principles can be expensive to develop and evaluate, and hard to use, particularly when convergence issues arise. This work proves that Bayesian symbolic learning can be applied to derive simple closed-form expressions from rigorous process simulations, streamlining the process modeling task and making process models more accessible to experimental groups. Compared to conventional surrogate models, our approach provides analytical expressions that are easier to communicate and manipulate algebraically to get insights into the process. We apply this method to synthetic data obtained from two basic CO2 capture processes simulated in Aspen HYSYS, identifying accurate simplified interpretable equations for key variables dictating the process economic and environmental performance. We then use these expressions to analyze the process variables' elasticities and benchmark an emerging CO2 capture process against the business as usual technology.
Àrees temàtiques: Química Interdisciplinar General chemistry General chemical engineering Engenharias ii Ciências agrárias i Chemistry, multidisciplinary Chemistry (miscellaneous) Chemistry (all) Chemical engineering (miscellaneous) Chemical engineering (all)
Accès a la llicència d'ús: https://creativecommons.org/licenses/by/3.0/es/
Adreça de correu electrònic de l'autor: roger.guimera@urv.cat marta.sales@urv.cat
Identificador de l'autor: 0000-0002-3597-4310 0000-0002-8140-6525
Data d'alta del registre: 2024-10-19
Versió de l'article dipositat: info:eu-repo/semantics/publishedVersion
Enllaç font original: https://pubs.acs.org/doi/10.1021/acsomega.2c04736
URL Document de llicència: https://repositori.urv.cat/ca/proteccio-de-dades/
Referència a l'article segons font original: Acs Omega. 7 (45): 41147-41164
Referència de l'ítem segons les normes APA: Negri, Valentina; Vazquez, Daniel; Sales-Pardo, Marta; Guimera, Roger; Guillen-Gosalbez, Gonzalo (2022). Bayesian Symbolic Learning to Build Analytical Correlations from Rigorous Process Simulations: Application to CO2Capture Technologies. Acs Omega, 7(45), 41147-41164. DOI: 10.1021/acsomega.2c04736
DOI de l'article: 10.1021/acsomega.2c04736
Entitat: Universitat Rovira i Virgili
Any de publicació de la revista: 2022
Tipus de publicació: Journal Publications