Articles producció científica> Enginyeria Informàtica i Matemàtiques

A Critical Review on the Use (and Misuse) of Differential Privacy in Machine Learning

  • Dades identificatives

    Identificador: imarina:9289126
    Autors:
    Blanco-Justicia, AlbertoSanchez, DavidDomingo-Ferrer, JosepMuralidhar, Krishnamurty
    Resum:
    We review the use of differential privacy (DP) for privacy protection in machine learning (ML). We show that, driven by the aim of preserving the accuracy of the learned models, DP-based ML implementations are so loose that they do not offer the ex ante privacy guarantees of DP. Instead, what they deliver is basically noise addition similar to the traditional (and often criticized) statistical disclosure control approach. Due to the lack of formal privacy guarantees, the actual level of privacy offered must be experimentally assessed ex post , which is done very seldom. In this respect, we present empirical results showing that standard anti-overfitting techniques in ML can achieve a better utility/privacy/efficiency tradeoff than DP.
  • Altres:

    Autor segons l'article: Blanco-Justicia, Alberto; Sanchez, David; Domingo-Ferrer, Josep; Muralidhar, Krishnamurty
    Departament: Enginyeria Informàtica i Matemàtiques
    Autor/s de la URV: Blanco Justicia, Alberto / Domingo Ferrer, Josep / Sánchez Ruenes, David
    Paraules clau: Machine learning Federated learning Differential privacy Data utility machine learning federated learning data utility
    Resum: We review the use of differential privacy (DP) for privacy protection in machine learning (ML). We show that, driven by the aim of preserving the accuracy of the learned models, DP-based ML implementations are so loose that they do not offer the ex ante privacy guarantees of DP. Instead, what they deliver is basically noise addition similar to the traditional (and often criticized) statistical disclosure control approach. Due to the lack of formal privacy guarantees, the actual level of privacy offered must be experimentally assessed ex post , which is done very seldom. In this respect, we present empirical results showing that standard anti-overfitting techniques in ML can achieve a better utility/privacy/efficiency tradeoff than DP.
    Àrees temàtiques: Theoretical computer science Medicina ii Matemática / probabilidade e estatística Interdisciplinar General computer science Engenharias iv Computer science, theory & methods Computer science (miscellaneous) Computer science (all) Ciência da computação Astronomia / física
    Accès a la llicència d'ús: https://creativecommons.org/licenses/by/3.0/es/
    Adreça de correu electrònic de l'autor: alberto.blanco@urv.cat david.sanchez@urv.cat josep.domingo@urv.cat
    Identificador de l'autor: 0000-0002-1108-8082 0000-0001-7275-7887 0000-0001-7213-4962
    Data d'alta del registre: 2024-10-12
    Versió de l'article dipositat: info:eu-repo/semantics/acceptedVersion
    Enllaç font original: https://dl.acm.org/doi/10.1145/3547139
    URL Document de llicència: https://repositori.urv.cat/ca/proteccio-de-dades/
    Referència a l'article segons font original: Acm Computing Surveys. 55 (8): 1-16
    Referència de l'ítem segons les normes APA: Blanco-Justicia, Alberto; Sanchez, David; Domingo-Ferrer, Josep; Muralidhar, Krishnamurty (2023). A Critical Review on the Use (and Misuse) of Differential Privacy in Machine Learning. Acm Computing Surveys, 55(8), 1-16. DOI: 10.1145/3547139
    DOI de l'article: 10.1145/3547139
    Entitat: Universitat Rovira i Virgili
    Any de publicació de la revista: 2023
    Tipus de publicació: Journal Publications
  • Paraules clau:

    Computer Science (Miscellaneous),Computer Science, Theory & Methods,Theoretical Computer Science
    Machine learning
    Federated learning
    Differential privacy
    Data utility
    machine learning
    federated learning
    data utility
    Theoretical computer science
    Medicina ii
    Matemática / probabilidade e estatística
    Interdisciplinar
    General computer science
    Engenharias iv
    Computer science, theory & methods
    Computer science (miscellaneous)
    Computer science (all)
    Ciência da computação
    Astronomia / física
  • Documents:

  • Cerca a google

    Search to google scholar