Autor segons l'article: Blanco-Justicia, Alberto; Sanchez, David; Domingo-Ferrer, Josep; Muralidhar, Krishnamurty
Departament: Enginyeria Informàtica i Matemàtiques
Autor/s de la URV: Blanco Justicia, Alberto / Domingo Ferrer, Josep / Sánchez Ruenes, David
Paraules clau: Machine learning Federated learning Differential privacy Data utility machine learning federated learning data utility
Resum: We review the use of differential privacy (DP) for privacy protection in machine learning (ML). We show that, driven by the aim of preserving the accuracy of the learned models, DP-based ML implementations are so loose that they do not offer the
ex ante
privacy guarantees of DP. Instead, what they deliver is basically noise addition similar to the traditional (and often criticized) statistical disclosure control approach. Due to the lack of formal privacy guarantees, the actual level of privacy offered must be experimentally assessed
ex post
, which is done very seldom. In this respect, we present empirical results showing that standard anti-overfitting techniques in ML can achieve a better utility/privacy/efficiency tradeoff than DP.
Àrees temàtiques: Theoretical computer science Medicina ii Matemática / probabilidade e estatística Interdisciplinar General computer science Engenharias iv Computer science, theory & methods Computer science (miscellaneous) Computer science (all) Ciência da computação Astronomia / física
Accès a la llicència d'ús: https://creativecommons.org/licenses/by/3.0/es/
Adreça de correu electrònic de l'autor: alberto.blanco@urv.cat david.sanchez@urv.cat josep.domingo@urv.cat
Identificador de l'autor: 0000-0002-1108-8082 0000-0001-7275-7887 0000-0001-7213-4962
Data d'alta del registre: 2024-10-12
Versió de l'article dipositat: info:eu-repo/semantics/acceptedVersion
URL Document de llicència: https://repositori.urv.cat/ca/proteccio-de-dades/
Referència a l'article segons font original: Acm Computing Surveys. 55 (8): 1-16
Referència de l'ítem segons les normes APA: Blanco-Justicia, Alberto; Sanchez, David; Domingo-Ferrer, Josep; Muralidhar, Krishnamurty (2023). A Critical Review on the Use (and Misuse) of Differential Privacy in Machine Learning. Acm Computing Surveys, 55(8), 1-16. DOI: 10.1145/3547139
Entitat: Universitat Rovira i Virgili
Any de publicació de la revista: 2023
Tipus de publicació: Journal Publications