Articles producció científica> Enginyeria Informàtica i Matemàtiques

The adjacency dimension of graphs

  • Dades identificatives

    Identificador: imarina:9293726
    Autors:
    S BermudoJM RodríguezJA Rodríguez-VelázquezJM Sigarreta
    Resum:
    It is known that the problem of computing the adjacency dimension of a graph is NP-hard. This suggests finding the adjacency dimension for special classes of graphs or obtaining good bounds on this invariant. In this work we obtain general bounds on the adjacency dimension of a graph G in terms of known parameters of G. We discuss the tightness of these bounds and, for some particular classes of graphs, we obtain closed formulae. In particular, we show the close relationships that exist between the adjacency dimension and other parameters, like the domination number, the location-domination number, the 2-domination number, the independent 2-domination number, the vertex cover number, the independence number and the super domination number.
  • Altres:

    Autor segons l'article: S Bermudo; JM Rodríguez; JA Rodríguez-Velázquez; JM Sigarreta
    Departament: Enginyeria Informàtica i Matemàtiques
    Autor/s de la URV: Rodríguez Velázquez, Juan Alberto
    Paraules clau: Super domination number Metric dimension Location-domination number Independence number Adjacency dimension
    Resum: It is known that the problem of computing the adjacency dimension of a graph is NP-hard. This suggests finding the adjacency dimension for special classes of graphs or obtaining good bounds on this invariant. In this work we obtain general bounds on the adjacency dimension of a graph G in terms of known parameters of G. We discuss the tightness of these bounds and, for some particular classes of graphs, we obtain closed formulae. In particular, we show the close relationships that exist between the adjacency dimension and other parameters, like the domination number, the location-domination number, the 2-domination number, the independent 2-domination number, the vertex cover number, the independence number and the super domination number.
    Àrees temàtiques: Theoretical computer science Mathematics, applied Mathematics Matemática / probabilidade e estatística Geometry and topology Discrete mathematics and combinatorics Algebra and number theory
    Accès a la llicència d'ús: https://creativecommons.org/licenses/by/3.0/es/
    Adreça de correu electrònic de l'autor: juanalberto.rodriguez@urv.cat
    Identificador de l'autor: 0000-0002-9082-7647
    Data d'alta del registre: 2024-10-26
    Versió de l'article dipositat: info:eu-repo/semantics/publishedVersion
    Enllaç font original: https://amc-journal.eu/index.php/amc/article/view/2496
    URL Document de llicència: https://repositori.urv.cat/ca/proteccio-de-dades/
    Referència a l'article segons font original: Ars Mathematica Contemporanea. 22 (3), # P3. 02-16 pp. (3):
    Referència de l'ítem segons les normes APA: S Bermudo; JM Rodríguez; JA Rodríguez-Velázquez; JM Sigarreta (2022). The adjacency dimension of graphs. Ars Mathematica Contemporanea, 22 (3), # P3. 02-16 pp.(3), -. DOI: 10.26493/1855-3974.2496.07a
    DOI de l'article: 10.26493/1855-3974.2496.07a
    Entitat: Universitat Rovira i Virgili
    Any de publicació de la revista: 2022
    Tipus de publicació: Journal Publications
  • Paraules clau:

    Algebra and Number Theory,Discrete Mathematics and Combinatorics,Geometry and Topology,Mathematics,Mathematics, Applied,Theoretical Computer Science
    Super domination number
    Metric dimension
    Location-domination number
    Independence number
    Adjacency dimension
    Theoretical computer science
    Mathematics, applied
    Mathematics
    Matemática / probabilidade e estatística
    Geometry and topology
    Discrete mathematics and combinatorics
    Algebra and number theory
  • Documents:

  • Cerca a google

    Search to google scholar